tuanio's picture
Model save
b263f5c
|
raw
history blame
8.11 kB
metadata
license: cc-by-nc-4.0
base_model: nguyenvulebinh/wav2vec2-base-vietnamese-250h
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: >-
      fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.99_g1.0-0.05_10_0.004_40
    results: []

fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.99_g1.0-0.05_10_0.004_40

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.2488
  • Wer: 0.0990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer
2181.8592 0.94 50 1087.6210 15.9420
1908.6856 1.89 100 809.7703 15.8773
838.4017 2.83 150 112.6467 0.9997
117.7945 3.77 200 85.6792 1.0
109.9946 4.72 250 82.5771 1.0
105.7306 5.66 300 79.6600 1.0
102.0127 6.6 350 77.2287 1.0
97.9428 7.55 400 75.4334 1.0
96.0055 8.49 450 74.6870 1.0
96.9376 9.43 500 74.2493 1.0
95.6634 10.38 550 74.1341 1.0
96.1578 11.32 600 74.9003 1.0
92.5678 12.26 650 75.6603 1.0598
90.5927 13.21 700 73.4555 1.0539
87.8965 14.15 750 72.4102 0.9987
86.8467 15.09 800 69.7737 0.9984
85.3381 16.04 850 67.8433 0.9717
80.3298 16.98 900 52.4081 0.8594
56.9494 17.92 950 25.2678 0.3554
32.292 18.87 1000 14.8634 0.2190
22.3255 19.81 1050 11.2898 0.1823
17.6187 20.75 1100 9.1387 0.1534
15.1531 21.7 1150 7.6636 0.1368
13.1696 22.64 1200 7.0291 0.1434
11.9792 23.58 1250 6.6867 0.1325
11.2404 24.53 1300 6.2948 0.1213
10.6256 25.47 1350 5.7151 0.1180
9.452 26.42 1400 5.4196 0.1175
9.3087 27.36 1450 5.2929 0.1124
8.5149 28.3 1500 5.1394 0.1163
8.3662 29.25 1550 5.1275 0.1213
7.8852 30.19 1600 4.9033 0.1093
7.5135 31.13 1650 4.9572 0.1097
7.5374 32.08 1700 4.7588 0.1016
7.2968 33.02 1750 4.7317 0.1033
7.0861 33.96 1800 4.7916 0.1087
6.6371 34.91 1850 4.7941 0.1132
6.6186 35.85 1900 4.6608 0.1036
6.6288 36.79 1950 4.6790 0.1074
6.2433 37.74 2000 4.7715 0.1121
6.2362 38.68 2050 4.6420 0.1034
5.957 39.62 2100 4.5756 0.1070
5.8034 40.57 2150 4.4112 0.1060
5.4943 41.51 2200 4.5632 0.1034
5.5593 42.45 2250 4.5376 0.1105
5.3447 43.4 2300 4.5423 0.1006
5.4181 44.34 2350 4.3789 0.0993
5.222 45.28 2400 4.3695 0.1031
5.1146 46.23 2450 4.4108 0.1084
5.0952 47.17 2500 4.2957 0.1016
4.9023 48.11 2550 4.3769 0.1021
5.1633 49.06 2600 4.3633 0.1063
4.9489 50.0 2650 4.3422 0.1045
4.7391 50.94 2700 4.2510 0.1029
4.7996 51.89 2750 4.3254 0.1012
4.244 52.83 2800 4.4121 0.1035
4.5831 53.77 2850 4.4056 0.1044
4.5198 54.72 2900 4.3638 0.1050
4.1964 55.66 2950 4.3397 0.1071
4.0544 56.6 3000 4.3493 0.1031
4.3568 57.55 3050 4.4721 0.1059
4.2692 58.49 3100 4.4278 0.1117
4.1226 59.43 3150 4.3081 0.1004
4.2681 60.38 3200 4.4176 0.1059
3.8412 61.32 3250 4.3213 0.1028
4.1387 62.26 3300 4.3419 0.1056
3.6847 63.21 3350 4.2498 0.1065
3.8768 64.15 3400 4.2776 0.1028
3.659 65.09 3450 4.2988 0.1008
3.809 66.04 3500 4.3041 0.1034
3.7459 66.98 3550 4.2955 0.0995
3.7996 67.92 3600 4.2843 0.0993
3.6773 68.87 3650 4.2396 0.0988
3.6364 69.81 3700 4.2206 0.0963
3.6342 70.75 3750 4.2905 0.1018
3.7012 71.7 3800 4.3084 0.0994
3.4846 72.64 3850 4.2872 0.0976
3.4814 73.58 3900 4.2596 0.1003
3.3212 74.53 3950 4.2270 0.0964
3.6578 75.47 4000 4.2477 0.0978
3.4573 76.42 4050 4.2389 0.0973
3.5776 77.36 4100 4.2827 0.0989
3.5116 78.3 4150 4.3245 0.1002
3.3334 79.25 4200 4.2707 0.0996
3.4829 80.19 4250 4.2456 0.0982
3.44 81.13 4300 4.2846 0.1003
3.4112 82.08 4350 4.2800 0.0977
3.3825 83.02 4400 4.2569 0.0976
3.3444 83.96 4450 4.2334 0.0949
3.5125 84.91 4500 4.2632 0.0978
3.3393 85.85 4550 4.2508 0.0979
3.4698 86.79 4600 4.2483 0.1000
3.3466 87.74 4650 4.2560 0.0985
3.3808 88.68 4700 4.2550 0.0973
3.3442 89.62 4750 4.2574 0.0982
3.0359 90.57 4800 4.2572 0.0993
3.5286 91.51 4850 4.2509 0.0993
3.0826 92.45 4900 4.2408 0.0977
3.513 93.4 4950 4.2531 0.0990
3.272 94.34 5000 4.2558 0.0995
3.2433 95.28 5050 4.2515 0.0992
3.3373 96.23 5100 4.2524 0.1001
3.2239 97.17 5150 4.2540 0.0995
3.4072 98.11 5200 4.2486 0.0993
3.3015 99.06 5250 4.2497 0.0988
3.329 100.0 5300 4.2488 0.0990

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.14.1