File size: 73,257 Bytes
345ee20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 |
# ------------------------------------------------------------------------
# Hulk: A Universal Knowledge Translator for Human-centric Tasks
# Copyright (c) 2024 Shanghai AI Laboratory. All Rights Reserved.
# Licensed under the MIT License, [see LICENSE for details]
# ------------------------------------------------------------------------
import copy
import os
import re
import collections
import time
import random
import datetime
import traceback
import numpy as np
import core.models.decoders as decoders
import core.models.backbones as backbones
import core.models.necks as necks
import core.data.datasets as datasets
import core.optimizers as optimizers
import core.models.input_adapter as input_adapter
import core.models.output_projector as output_projector
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from core.data.datasets.images.seg_dataset_dev import Instances
from core.data.transforms.pose_transforms import DataContainer
from core.models.model_entry import aio_entry_v2mae_shareneck
from core.distributed_utils import (DistModule, vgather, vreduce, reduce_dict, DistModule_Hulk )
from core.data.samplers.sampler import DistributedGivenIterationSampler, DistributedSequentialSampler
from core.utils import (AverageMeter, count_parameters_num, change_tensor_half, printlog, change_tensor_cuda,
create_logger, load_state_model, load_state_optimizer, save_state,
get_num_layer_for_vit, get_num_layer_for_vit_with_adapter)
from core.solvers.utils.pos_tester_dev import PoseEvaluator, MPIIPoseEvaluator
from core.solvers.utils.par_tester_dev import HumParEvaluator, HumParEvaluator_bce_cls, HumParMAEEvaluator
from core.solvers.utils.peddet_tester_dev import PedDetMAEEvaluator
from core.solvers.utils.attr_tester_dev import PedAttrMAEEvaluator
from core.solvers.utils.skeleton_action_tester_dev import SkeletonActionMAEEvaluator
from core.solvers.utils.smpl_tester_dev import SMPLMAEEvaluator
from core.solvers.utils.image_caption_tester_dev import Image_Caption_Evaluator
from helper.vis_helper import inv_normalize_batch, vis_one_from_batch
from easydict import EasyDict as edict
from dict_recursive_update import recursive_update
from tensorboardX import SummaryWriter
from dict_recursive_update import recursive_update
from collections import OrderedDict
from collections.abc import Mapping
from contextlib import ExitStack, contextmanager
from .solver_deter import SolverDeter, WorkerInit
from core.utils import nested_tensor_from_tensor_list, nested_tensor_from_tensor_list_fix_shape
import torch.distributed as dist
DEBUG_MODE = False
class SolverMAEDev(SolverDeter):
def __init__(self, C):
super().__init__(C)
# change .half of Tensor
change_tensor_half()
if 'SLURM_NODELIST' in os.environ:
printlog(f"hostnames: {os.environ['SLURM_NODELIST']}")
printlog(f"NODEID: {os.environ['SLURM_NODEID']} - {os.environ['SLURMD_NODENAME']}")
def initialize(self, args):
self.create_dataset()
self.create_model()
self.create_optimizer()
self.load_args = args
self.load(args)
self.create_dataloader()
self.create_lr_scheduler()
def create_model(self):
## build patch adapter and label adapter
patch_adapter_module = input_adapter.patchembed_entry(self.config.patch_adapter)
label_adapter_module = input_adapter.patchembed_entry(self.config.label_adapter)
## build backbone
self.config.backbone.kwargs.bn_group = self.ginfo.backbone_share_group
backbone_module = backbones.backbone_entry(self.config.backbone)
count_parameters_num(backbone_module)
## build neck for patch and label
self.config.patch_neck.kwargs.backbone = backbone_module
patch_neck_module = necks.neck_entry(self.config.patch_neck)
self.config.label_neck.kwargs.backbone = backbone_module
label_neck_module = necks.neck_entry(self.config.label_neck)
## build decoder(s)
self.config.decoder.kwargs.backbone = backbone_module
self.config.decoder.kwargs.neck = patch_neck_module
self.config.decoder.kwargs.patch_adapter = patch_adapter_module
self.config.decoder.kwargs.label_adapter = label_adapter_module
self.config.decoder.kwargs.patch_neck = patch_neck_module
self.config.decoder.kwargs.label_neck = label_neck_module
self.config.decoder.kwargs.bn_group = self.ginfo.decoder_share_group
self.config.decoder.kwargs.ginfo = self.ginfo
if self.config.dataset.type == "COCOStuffSegDatasetDev":
self.config.decoder.kwargs.ignore_value = self.config.dataset.kwargs.cfg.ignore_value
self.config.decoder.kwargs.num_classes = self.config.dataset.kwargs.cfg.num_classes
elif self.config.dataset.type in ["COCOPosDatasetDev", "MultiPoseDatasetDev", 'MPIIPosDatasetDev']:
self.config.decoder.kwargs.num_classes = self.dataset.num_classes if self.config.dataset.type != 'MPIIPosDatasetDev' else 16
self.config.decoder.kwargs.ignore_value = None
elif "ParsingDataset" in self.config.dataset.type:
self.config.decoder.kwargs.ignore_value = self.config.dataset.kwargs.cfg.ignore_value
self.config.decoder.kwargs.num_classes = self.config.dataset.kwargs.cfg.num_classes
elif self.config.dataset.type in ['MultiAttrDataset', 'mmSkeletonDataset']:
self.config.decoder.kwargs.ignore_value = None
self.config.decoder.kwargs.num_classes = 0 # compatablity fix, will be removed, not effective
elif self.config.dataset.type in ["PedestrainDetectionDataset_v2", 'CrowdHumanDetDataset', "PedestrainDetectionDataset_v2demo"]:
self.config.decoder.kwargs.ignore_value = None
self.config.decoder.kwargs.num_classes = 1 # treat pedestrain classificatin as a binary classification
elif self.config.dataset.type in ['CocoCaption', 'CocoCaptiondemo']:
self.config.decoder.kwargs.ignore_value = None
self.config.decoder.kwargs.num_classes = 1
elif self.config.dataset.type in ["MeshTSVYamlDataset"]:
self.config.decoder.kwargs.ignore_value = None
self.config.decoder.kwargs.num_classes = 1 # No class required
else:
raise NotImplementedError
decoder_module = decoders.decoder_entry(self.config.decoder)
## build output project using the setting of corresponding input adapters
patch_proj_kwargs_dict = {'kwargs':{'hidden_dim': self.config.decoder.kwargs.transformer_predictor_cfg.hidden_dim,
'patch_size': patch_adapter_module.patch_size,
'in_chans': patch_adapter_module.in_chans,
'stride_level': patch_adapter_module.stride_level,}
}
patch_proj_loss_cfg_kwargs_dict = {'kwargs':{
'patch_size': patch_adapter_module.patch_size[0],
'stride': patch_adapter_module.stride_level,
'ginfo': self.ginfo
}}
# rgb branch has a default kwargs - extra_norm_pix_loss,
# use recursive_update to update other kwargs.
recursive_update(self.config.patch_proj, patch_proj_kwargs_dict)
recursive_update(self.config.patch_proj.kwargs.loss_cfg, patch_proj_loss_cfg_kwargs_dict)
patch_proj_module = output_projector.outputproj_entry(self.config.patch_proj)
label_proj_kwargs_dict = {
'kwargs': {'hidden_dim': self.config.decoder.kwargs.transformer_predictor_cfg.hidden_dim,
'patch_size': label_adapter_module.patch_size,
'in_chans': label_adapter_module.in_chans,
'stride_level': label_adapter_module.stride_level,
'loss_cfg':
{'kwargs':
{'patch_size': label_adapter_module.patch_size[0],
'stride': label_adapter_module.stride_level,
'ginfo': self.ginfo
}},
}
}
recursive_update(self.config.label_proj, label_proj_kwargs_dict)
label_proj_module = output_projector.outputproj_entry(self.config.label_proj)
modalities = {
'patch': self.config.patch_adapter.type.split('_adapter')[0],
'label': self.config.label_adapter.type.replace('_adapter', ''),
}
## build model
model = globals()[self.config.get('model_entry_type', 'model_entry')](backbone_module,
patch_neck_module,
label_neck_module,
decoder_module,
patch_adapter_module,
label_adapter_module,
patch_proj_module,
label_proj_module,
modalities,
self.config.get('model_entry_kwargs', {}),)
## distributed, detailed in distributed_utils.py
model.cuda()
if self.C.rank == 0:
print(model)
# model = DistModule_Hulk(model, sync=self.sync, task_grp=self.ginfo.group,
# share_backbone_group=self.ginfo.backbone_share_group,
# share_decoder_group=self.ginfo.decoder_share_group,
# share_rgb_group=self.ginfo.rgb_share_group,
# share_dense_labeling_group=self.ginfo.dense_labeling_share_group,
# share_sparse_labeling_group=self.ginfo.sparse_labeling_share_group,
# share_text_group=self.ginfo.text_share_group,
# share_video_group=self.ginfo.video_share_group,
# share_modality_group=self.ginfo.get('modality_share_group', None),
# )
self.model = model
return model
def create_optimizer(self):
## param_group
defaults = {}
defaults["lr"] = self.config.base_lr
defaults["weight_decay"] = self.config.optimizer.kwargs.weight_decay
norm_module_types = (
torch.nn.BatchNorm1d,
torch.nn.BatchNorm2d,
torch.nn.BatchNorm3d,
torch.nn.SyncBatchNorm,
# NaiveSyncBatchNorm inherits from BatchNorm2d
torch.nn.GroupNorm,
torch.nn.InstanceNorm1d,
torch.nn.InstanceNorm2d,
torch.nn.InstanceNorm3d,
torch.nn.LayerNorm,
torch.nn.LocalResponseNorm,
# SyncBatchNorm2d
)
memo = set()
param_groups = []
for module_name, module in self.model.named_modules():
for module_param_name, value in module.named_parameters(recurse=False):
if not value.requires_grad:
continue
# Avoid duplicating parameters
if value in memo:
continue
memo.add(value)
tmp_lr = copy.copy(defaults)["lr"]
hyperparams = copy.copy(defaults)
if "backbone_module" in module_name:
if self.config.get('layer_decay', False):
layer_id = get_num_layer_for_vit(module_name, self.config.layer_decay)
scale = self.config.layer_decay.layer_decay_rate ** (self.config.layer_decay.num_layers - layer_id - 1)
hyperparams["lr"] = hyperparams["lr"] * scale * self.config.get('backbone_multiplier', 1.0)
else:
hyperparams["lr"] = hyperparams["lr"] * self.config.get('backbone_multiplier', 1.0)
if module_name in ("module.backbone_module.pos_embed"): # should be if module_param_name == "pos_embed":, but it still works and latter not tested yet
hyperparams["lr"] = hyperparams["lr"] * self.config.get('pos_embed_multiplier', 1.0)
if self.config.get('vdp_wd_rule', False) and (len(value.shape) == 1 or module_param_name.endswith(".bias")):
hyperparams["weight_decay"] = 0.0
if "adapter_" in module_name:
if self.config.get('layer_decay', False):
layer_id = get_num_layer_for_vit_with_adapter(module_name, module_param_name, self.config.layer_decay)
# import pdb;pdb.set_trace()
scale = self.config.layer_decay.layer_decay_rate ** (self.config.layer_decay.num_layers - layer_id - 1)
hyperparams["lr"] = hyperparams["lr"] * scale * self.config.get('backbone_multiplier', 1.0)
else:
hyperparams["lr"] = hyperparams["lr"] * self.config.get('backbone_multiplier', 1.0)
if "pos_embed" in module_name: #module_name in ("module.adapter_module.pos_embed"): # should be if module_param_name == "pos_embed":, but it still works and latter not tested yet
hyperparams["lr"] = hyperparams["lr"] * self.config.get('pos_embed_multiplier', 1.0)
if self.config.get('vdp_wd_rule', False) and (len(value.shape) == 1 or module_param_name.endswith(".bias")):
hyperparams["weight_decay"] = 0.0
if "neck_" in module_name:
hyperparams["lr"] = hyperparams["lr"] * self.config.get('neck_multiplier', 1.0)
if len(prompt_list) and self.config.get('prompt_tuning', False):
value.requires_grad = False
if "decoder_module" in module_name:
if self.config.get('prompt_tuning', False) and \
("query_embed" in module_name or "query_feat" in module_name):
pass
else:
hyperparams["lr"] = hyperparams["lr"] * self.config.get('decoder_multiplier', 1.0)
if "bias" in module_param_name:
hyperparams["lr"] = hyperparams["lr"] * self.config.get('bias_multiplier', 1.0)
if 'translate_weight' in module_param_name:
# test for the learnable translate weight in the project, which aims at scaling the cosine similarity
# between the output query features and the text features.
hyperparams['lr'] = hyperparams['lr'] * self.config.get('translate_weight_multiplier', 1.0)
if (
"relative_position_bias_table" in module_param_name
or "absolute_pos_embed" in module_param_name
or "pos_embed" in module_param_name
or "cls_token" in module_param_name
or 'rel_pos_' in module_param_name
or 'bias' in module_param_name
or isinstance(module, norm_module_types)
or isinstance(module, torch.nn.Embedding)
):
hyperparams["weight_decay"] = 0.0
# deep prompt setting
prompt_list = self.config.get('prompt_list', [])
if len(prompt_list):
if not any([p_param in module_name for p_param in prompt_list]):
value.requires_grad = False
else:
hyperparams["lr"] = tmp_lr
if value.task_specific and self.config.get('task_specific_lr_scale', False):
hyperparams["lr"] = hyperparams["lr"] / self.ginfo.task_weight
param_groups.append({"params": [value], **hyperparams})
if self.ginfo.task_rank == 0:
self.logger.info(f"task_id: {self.ginfo.task_id} \t"
f"module_name: {module_name} \t\t "
f"module_param_name: {module_param_name} \t\t "
f"specification: {hyperparams}")
self.config.optimizer.kwargs.params = param_groups
self.config.optimizer.kwargs.lr = self.config.base_lr
self.optimizer = optimizers.optim_entry(self.config.optimizer)
def create_dataset(self):
self.config.dataset.kwargs.ginfo = self.ginfo
self.dataset = datasets.dataset_entry(self.config.dataset)
printlog(self.dataset.__repr__())
dist.barrier()
def create_dataloader(self):
self.sampler = DistributedGivenIterationSampler(
self.dataset, self.config.max_iter * self.config.sampler.get('batch_accumulation', 1),
self.config.sampler.batch_size, world_size=self.ginfo.task_size, rank=self.ginfo.task_rank,
last_iter=self.last_iter, shuffle_strategy=self.config.sampler.shuffle_strategy,
random_seed=self.ginfo.task_random_seed,
ret_save_path=self.config.sampler.get('ret_save_path', None))
collate_type = self.config.get('collate', 'dev')
if collate_type == 'det':
collate = det_collate
elif collate_type == 'fixed_det':
collate = fixed_det_collate
else:
collate = dev_collate
self.loader = DataLoader(self.dataset, batch_size=self.config.sampler.batch_size,
shuffle=False, num_workers=self.config.workers, collate_fn=collate,
pin_memory=False, sampler=self.sampler, worker_init_fn=self.worker_init_fn)
def load(self, args):
if args.load_path == '':
return
load_path = args.load_path if args.load_single else args.load_path.replace('ckpt_task_', f'ckpt_task{self.config.get("ckpt_task_id", self.ginfo.task_id)}_')
try:
checkpoint = torch.load(load_path, 'cpu')
except:
raise FileNotFoundError(f'=> no checkpoint found at {load_path}')
if self.ginfo.task_rank == 0:
printlog(f"Recovering from {load_path}, keys={list(checkpoint.keys())}")
if 'state_dict' in checkpoint:
pretrained_state_dict = checkpoint['state_dict']
else:
pretrained_state_dict = checkpoint
ignores = args.ignore + self.config.get('load_ignore', []) if not args.recover else []
if len(ignores) > 0:
for k in list(pretrained_state_dict.keys()):
flag = False
for prefix in ignores:
if k.startswith(prefix):
flag = True
the_prefix = prefix
break
if flag:
print('ignoring {} (prefix: {})'.format(k, the_prefix))
del pretrained_state_dict[k]
pretrained_state_dict_new = dict()
for k in list(pretrained_state_dict.keys()):
if '_orig_mod.' in k:
k_new = k.split('_orig_mod.')[1]
pretrained_state_dict_new[k_new] = pretrained_state_dict[k]
else:
pretrained_state_dict_new[k] = pretrained_state_dict[k]
load_state_model(self.model, pretrained_state_dict_new, self.ginfo)
if args.finetune and not args.recover:
return
if 'optimizer' in checkpoint:
load_state_optimizer(self.optimizer, checkpoint['optimizer'], self.ginfo)
self.last_iter = checkpoint['step'] - 1
elif args.recover:
self.last_iter = checkpoint['step'] - 1
def pre_run(self):
tmp = self.tmp
tmp.vtask_time = AverageMeter(10)
tmp.vbatch_time = AverageMeter(10)
tmp.vdata_time = AverageMeter(10)
tmp.vloss = AverageMeter(10)
tmp.loss2d = AverageMeter(10)
tmp.loss3d = AverageMeter(10)
tmp.vertexloss = AverageMeter(10)
tmp.vtop1 = AverageMeter(10)
dist.barrier()
printlog(f">>> sanity check: attempting torch.Tensor(1).cuda(), check task_sp_list if stuck")
torch.Tensor(1).cuda()
printlog(f">>> sanity check: torch.Tensor(1).cuda() passed")
tmp.loss_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.loss_list_2d = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.loss_list_3d = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.loss_list_vertex = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.top1_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.vbackbone_grad_norm = AverageMeter(10)
tmp.backbone_grad_norm_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.vneck_grad_norm = AverageMeter(10)
tmp.neck_grad_norm_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.vdecoder_grad_norm = AverageMeter(10)
tmp.decoder_grad_norm_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.vbackbone_grad_thresh = AverageMeter(10)
tmp.backbone_grad_thresh_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.vneck_grad_thresh = AverageMeter(10)
tmp.neck_grad_thresh_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.vdecoder_grad_thresh = AverageMeter(10)
tmp.decoder_grad_thresh_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
dist.barrier()
# torch.compile(self.model).train()
# self.model = torch.compile(self.model)
self.model.train()
def gather_result(self):
tmp = self.tmp
ginfo = self.ginfo
# import pdb;pdb.set_trace()
vreduce(tmp.vloss, tmp.raw_loss.data, group=ginfo.group)
try:
# only SMPL task needs
vreduce(tmp.loss2d, tmp.raw_losses.loss_2d_joints.data, group=ginfo.group)
vreduce(tmp.loss3d, tmp.raw_losses.loss_3d_joints.data, group=ginfo.group)
vreduce(tmp.vertexloss, tmp.raw_losses.loss_vertices.data, group=ginfo.group)
except:
pass
vreduce(tmp.vtop1, tmp.top1, group=ginfo.group)
vgather(tmp.loss_list, tmp.vloss.avg)
try:
vgather(tmp.loss_list_2d, tmp.loss2d.avg)
vgather(tmp.loss_list_3d, tmp.loss3d.avg)
vgather(tmp.loss_list_vertex, tmp.vertexloss.avg)
except:
pass
vgather(tmp.top1_list, tmp.vtop1.avg)
if self.config.get('verbose_loss', True):
tmp.vlosses = reduce_dict(tmp.raw_losses, task_size=self.ginfo.task_size,
task_rank=self.ginfo.task_rank, group=self.ginfo.group)
else:
tmp.vlosses = {}
def tb_logging(self, vis_batch=False):
tmp = self.tmp
ginfo = self.ginfo
for tid,ii in enumerate(ginfo.task_root_ranks):
self.tb_logger.add_scalar('loss_{}'.format(ginfo.task_names[tid]), tmp.loss_list[ii], tmp.current_step)
self.tb_logger.add_scalar('loss_2d_{}'.format(ginfo.task_names[tid]), tmp.loss_list_2d[ii], tmp.current_step)
self.tb_logger.add_scalar('loss_3d_{}'.format(ginfo.task_names[tid]), tmp.loss_list_3d[ii], tmp.current_step)
self.tb_logger.add_scalar('loss_vertex_{}'.format(ginfo.task_names[tid]), tmp.loss_list_vertex[ii], tmp.current_step)
self.tb_logger.add_scalar('top1_{}'.format(ginfo.task_names[tid]), tmp.top1_list[ii], tmp.current_step)
for k, v in tmp.vlosses.items():
self.tb_logger.add_scalar('{}_{}'.format(k, ginfo.task_names[tid]), v, tmp.current_step)
if vis_batch:
# visualize train data on tensorboard
vis_list = []
vis_cnt_each_gpu = len(tmp.vis_label_list) // self.C.world_size
vis_group_size = min(ginfo.task_size, 2)
for rank_ix in range(ii, ii + vis_group_size):
for vis_idx in range(vis_cnt_each_gpu):
offset = vis_idx * self.C.world_size + rank_ix
cur_label = int(tmp.vis_label_list[offset])
cur_image = tmp.vis_image_list[offset]
cur_image = inv_normalize_batch(cur_image, mean_arr=[0.485, 0.456, 0.406],
stddev_arr=[0.229, 0.224, 0.225])
vis_list.append({'name': '{}_{}'.format(cur_label, vis_idx), 'image': cur_image})
vis_img = vis_one_from_batch(vis_list, vis_height=192, vis_width=64, to_rgb=False)
if vis_img is not None:
# vis_img: BGR, CHW
self.tb_logger.add_image('train_image_{}'.format(ginfo.task_names[tid]), vis_img,
tmp.current_step)
self.tb_logger.add_scalar('lr', tmp.current_lr, tmp.current_step)
def logging(self):
tmp = self.tmp
config = self.config
ginfo = self.ginfo
vlosses = tmp.vlosses
log_msg = '\t'.join([
'Iter: [{0}/{1}] ',
'task{task_id:<2}: {task_name}',
'TaskFBTime: {task_time.avg:.3f}',
'Time: {batch_time.avg:.3f} (ETA:{eta:.2f}h) ({data_time.avg:.3f}) ',
'Loss: {loss.avg:.4f} ',
'Loss_2d: {loss_2d.avg:.4f} ',
'Loss_3d: {loss_3d.avg:.4f} ',
'Loss_vertex: {loss_vertex.avg:.4f} ',
'Prec@1: {top1.avg:.3f} ',
'LR: {current_lr} ',
'{meters} ',
'max mem: {memory:.0f}'
])
MB = 1024.0 * 1024.0
loss_str = []
for name, meter in vlosses.items():
loss_str.append(
"{}: {} ".format(name, str(meter.item()))
)
loss_str = '\t'.join(loss_str)
log_msg = log_msg.format(tmp.current_step, config.max_iter, \
task_id=ginfo.task_id, task_name=ginfo.task_name, \
task_time=tmp.vtask_time, \
batch_time=tmp.vbatch_time, \
eta=(config.max_iter-tmp.current_step)*tmp.vbatch_time.avg/3600, \
data_time=tmp.vdata_time, \
loss=tmp.vloss, \
loss_2d=tmp.loss2d, \
loss_3d=tmp.loss3d, \
loss_vertex=tmp.vertexloss, \
top1=tmp.vtop1, \
current_lr=tmp.current_lr, \
meters=loss_str, \
memory=torch.cuda.max_memory_allocated() / MB)
self.logger.info(log_msg)
def save(self):
if ((self.tmp.current_step + 1) % self.config.get('ckpt_interval', 1000) == 0 or
self.tmp.current_step + 1 == self.config.max_iter
) and self.ginfo.task_rank == 0:
save_state({
'step': self.tmp.current_step+1,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
}, '{}/ckpt_task{}'.format(self.ckpt_path, self.ginfo.task_id), 'newest')
if self.config.get('save_interval', -1) > 0 and (self.tmp.current_step+1) % self.config.save_interval == 0 and self.ginfo.task_rank == 0:
save_state({
'step': self.tmp.current_step+1,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
}, '{}/ckpt_task{}'.format(self.ckpt_path, self.ginfo.task_id), self.tmp.current_step+1)
def prepare_data(self):
self.tmp.input_var = dict()
for k, v in self.tmp.input.items():
if not isinstance(v, list) and not isinstance(v, str) and not isinstance(v, DataContainer):
self.tmp.input_var[k] = v.cuda()
elif k == "instances":
self.tmp.input_var[k] = [_v.cuda() for _v in v]
else:
self.tmp.input_var[k] = v
def forward(self):
## set random seed with current_step at each iteration
try:
self._set_randomseed(self.randomseed_pool[self.tmp.current_step])
except: # workaround for reid task resumed sampler/loader bug damaging newest_checkpoints at the end of training
time.sleep(240)
raise ValueError(f"max_iter: {self.config.max_iter} current_step(-1): {self.tmp.current_step} "
f"rank: {self.C.rank}, task_id: "
f"{self.ginfo.task_id} (<--- I guess its reid task) task_rank: {self.ginfo.task_rank}"
f"This error is a reminder that we caught a data_loader length bug (should be from reid "
f"task), but the program should end normally with final checkpoint intact")
tmp = self.tmp
ginfo = self.ginfo
oom = False
try:
output = self.model(tmp.input_var, tmp.current_step)
# import pdb;pdb.set_trace()
except RuntimeError as mem_error:
printlog(f"*****\n"
f"***** encountered potential mem_error, current node: "
f"{os.environ['SLURM_NODEID']} - {os.environ['SLURMD_NODENAME']}"
f"task_id: {self.ginfo.task_id}"
f"\n*****")
printlog(f"error_message:\n{mem_error}")
printlog(traceback.format_exc())
oom = True
if oom:
# python exception object holds a reference to the stack frame where the error was raised, which
# prevents the original tensor objects from being freed torch.cuda.empty_cache()
torch.cuda.empty_cache()
try:
output = self.model(tmp.input_var, tmp.current_step)
except RuntimeError as mem_error:
printlog(f"*****\n"
f"***** encountered potential mem_error, **restart attempt failed** current node: "
f"{os.environ['SLURM_NODEID']} - {os.environ['SLURMD_NODENAME']}"
f"\n*****")
raise mem_error
tmp.output = output['outputs']
tmp.raw_losses = {k:v for k,v in tmp.output.items() if 'loss' in k} # TODO: log all losses separately
# import pdb;pdb.set_trace()
if isinstance(tmp.raw_losses, dict): # only key with loss are used for loss computation
tmp.raw_loss = sum(tmp.raw_losses[k] for k in tmp.raw_losses.keys() if 'loss' in k) / ginfo.task_size
tmp.raw_losses = {k:v / ginfo.task_size for k,v in tmp.output.items() if 'loss' in k} # TODO: log all losses separately
else:
tmp.raw_loss = tmp.raw_losses / ginfo.task_size
tmp.raw_losses = {"total_loss": tmp.raw_losses}
if 'top1' in output:
tmp.raw_top1 = output['top1'] / ginfo.task_size
elif 'top1' in output['outputs']:
tmp.raw_top1 = output['outputs']['top1'] / ginfo.task_size
else:
tmp.raw_top1 = torch.zeros(1).cuda()
tmp.loss = tmp.raw_loss * ginfo.task_weight
tmp.top1 = tmp.raw_top1
# import pdb;pdb.set_trace()
def backward(self, is_start):
if is_start:
self.optimizer.zero_grad()
try:
(self.tmp.loss / self.config.sampler.get('batch_accumulation', 1)).backward()
name_list = [name for name, m in self.model.named_parameters() if (m.grad is not None and torch.isnan(m.grad.data).sum() > 0)]
# grad = {name:m.grad for name, m in self.model.named_parameters() if (m.grad is not None)}
if len(name_list):
self.optimizer.zero_grad()
import pdb;pdb.set_trace()
except RuntimeError as mem_error:
printlog(f"*****\n"
f"***** encountered potential mem_error, current node: "
f"{os.environ['SLURM_NODEID']} - {os.environ['SLURMD_NODENAME']}"
f"task_id: {self.ginfo.task_id}"
f"\n*****")
printlog(f"error_message:\n{mem_error}")
printlog(traceback.format_exc())
def backward_expand_bs(self):
try:
self.tmp.loss.backward()
except RuntimeError as mem_error:
printlog(f"*****\n"
f"***** encountered potential mem_error, current node: "
f"{os.environ['SLURM_NODEID']} - {os.environ['SLURMD_NODENAME']}"
f"task_id: {self.ginfo.task_id}"
f"\n*****")
printlog(f"error_message:\n{mem_error}")
printlog(traceback.format_exc())
def run_dummy(self):
raise
def run(self):
if DEBUG_MODE:
self.run_dummy()
return
config = self.config
ginfo = self.ginfo
tmp = self.tmp
self.pre_run()
end = time.time()
for i, tmp.input in enumerate(self.loader):
tmp.vdata_time.update(time.time() - end)
is_start = i % self.config.sampler.get('batch_accumulation', 1) == 0
is_end = (i + 1) % self.config.sampler.get('batch_accumulation', 1) == 0
self.prepare_data()
if is_start:
tmp.current_step = self.last_iter + i // self.config.sampler.get('batch_accumulation', 1) + 1
self.lr_scheduler.step(tmp.current_step)
tmp.current_lr = self.lr_scheduler.get_lr()[0]
self.forward()
self.backward(is_start)
if is_end:
tmp.vtask_time.update(time.time() - end)
self.model.reduce_gradients()
if tmp.current_step % config.print_freq == 0 and dist.get_rank() in ginfo.task_root_ranks and config.get('history', False):
for name, param in self.model.named_parameters():
# remove grad with None and grad that has no element
if param.grad is not None and param.grad.numel() > 0:
if config.get('norm_inf', False):
self.tb_logger.add_scalar(name + f'+rank{dist.get_rank()}',
param.grad.norm(p=float('inf')), tmp.current_step)
else:
self.tb_logger.add_histogram(name+f'+rank{dist.get_rank()}',
param.grad, tmp.current_step)
self.optimizer.step()
self.gather_result()
tmp.vbatch_time.update(time.time() - end)
end = time.time()
if tmp.current_step % config.print_freq == 0 and ginfo.task_rank == 0:
if ginfo.task_id == 0:
self.tb_logging()
self.logging()
if config.vis_batch and (tmp.current_step % config.print_freq == 0):
# =======vis batch=======
vis_cnt_each_gpu = 4
vis_label = int(tmp.input['label'][0])
vis_indices = []
for b_ix in range(tmp.input['image'].size(0)):
cur_label = int(tmp.input['label'][b_ix])
if cur_label == vis_label:
vis_indices.append(b_ix)
for rest in range(vis_cnt_each_gpu - len(vis_indices)):
vis_idx = np.random.choice(np.arange(tmp.input['image'].size(0)), 1)
vis_indices.append(vis_idx)
vis_indices = vis_indices[:vis_cnt_each_gpu]
tmp.vis_label_list = []
tmp.vis_image_list = []
for ix, vis_idx in enumerate(vis_indices):
vis_image = tmp.input['image'][vis_idx]
vis_label = int(tmp.input['label'][vis_idx])
tmp_label = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
vgather(tmp_label, vis_label)
tmp.vis_label_list.extend(tmp_label)
tmp_img = [torch.Tensor(vis_image.size()).cuda() for _ in range(self.C.world_size)]
dist.gather(vis_image, tmp_img, dst=0)
tmp.vis_image_list.extend(tmp_img)
# =======vis batch=======
if ginfo.task_rank == 0:
if ginfo.task_id == 0:
self.tb_logging()
self.logging()
self.save()
self.post_run()
class TesterMAEDev(SolverMAEDev):
def __init__(self, C_train, C_test):
torch.cuda.empty_cache()
train_config = edict(C_train.config['common'])
ginfo = C_train.ginfo
config = train_config
if C_test.config.get('common') is not None:
recursive_update(config, C_test.config.get('common'))
config = edict(config)
if 'out_dir' in config:
self.out_dir = config['out_dir'] + 'test_results/'
else:
self.out_dir = "./test_results/"
if 'expname' in config:
self.tb_path = '{}events/{}'.format(self.out_dir, config['expname'])
self.ckpt_path = '{}checkpoints/{}'.format(self.out_dir, config['expname'])
self.logs_path = '{}logs/{}'.format(self.out_dir, config['expname'])
else:
save_path = config.get('save_path', os.path.dirname(os.path.abspath(C_train.config_file)))
self.save_path = save_path
self.tb_path = '{}/test_results/events'.format(save_path)
self.ckpt_path = '{}/test_results/checkpoints'.format(save_path)
self.logs_path = '{}/test_results/logs'.format(save_path)
if C_train.rank == 0:
os.makedirs(self.tb_path, exist_ok=True)
os.makedirs(self.ckpt_path, exist_ok=True)
os.makedirs(self.logs_path, exist_ok=True)
project_name = config.get('project_name', os.path.dirname(C_train.config_file).split('/')[-1])
overwrite_last_training = config.get('overwrite_last_training',False)
self.tb_logger = SummaryWriter(self.tb_path)
else:
while not os.path.exists(self.logs_path):
time.sleep(1)
if ginfo.task_rank == 0:
assert C_train.rank == 0, "there shall be only one group"
self.logger = create_logger('global_logger', '{}/log_task_{}.txt'.format(self.logs_path, ginfo.task_id))
self.sync = config.get('sync', True)
self.C = C_train
self.config = config
self.ginfo = ginfo
# change tensor .cuda
change_tensor_cuda()
self.tmp = edict()
## random seed setting
rng = np.random.RandomState(self.config.get('random_seed', 0))
self.randomseed_pool = rng.randint(999999, size=config.max_iter)
### VVV deterministic measures VVV
if self.config.get('deterministic', False):
if self.config.get('cudnn_deterministic', True):
cudnn.deterministic = True
cudnn.benchmark = False
else:
cudnn.benchmark = True
seed = self.config.get('random_seed', 0)
worker_rank = self.config.get('worker_rank', False)
if worker_rank:
worker_init = WorkerInit(self.C.rank, self.config.workers)
else:
worker_init = WorkerInit(0, 0)
self.worker_init_fn = worker_init.func
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
dist.barrier()
if self.C.rank == 0:
self.logger.info(f'deterministic mode, seed: {seed}, worker_rank: {worker_rank},\
cudnn_deterministic: {self.config.get("cudnn_deterministic", True)}')
dist.barrier()
else:
self.worker_init_fn = None
def initialize(self, args):
self.create_dataset()
self.create_model()
self.load_args = args
self.load(args)
self.create_dataloader()
def create_dataloader(self):
self.test_sampler = DistributedSequentialSampler(self.dataset)
if self.config.get('collate', 'naive') == 'naive':
collate = naive_collate
elif self.config.collate == 'det':
collate = det_collate
else:
collate = dev_collate
self.test_loader = DataLoader(self.dataset, batch_size=self.config.sampler.batch_size,
shuffle=False, drop_last=False, num_workers=self.config.workers,
pin_memory=False, sampler=self.test_sampler, collate_fn=collate)
def load(self, args):
if args.load_path == '':
return
load_path = args.load_path if args.load_single else args.load_path.replace('ckpt_task_', f'ckpt_task{self.config.get("ckpt_task_id", self.ginfo.task_id)}_')
try:
checkpoint = torch.load(load_path, 'cpu')
except:
raise FileNotFoundError(f'=> no checkpoint found at {load_path}')
if self.ginfo.task_rank == 0:
printlog(f"Recovering from {load_path}, keys={list(checkpoint.keys())}")
if 'state_dict' in checkpoint:
pretrained_state_dict = checkpoint['state_dict']
else:
pretrained_state_dict = checkpoint
ignores = args.ignore + self.config.get('load_ignore', []) if not args.recover else []
if len(ignores) > 0:
for k in list(pretrained_state_dict.keys()):
flag = False
for prefix in ignores:
if k.startswith(prefix):
flag = True
the_prefix = prefix
break
if flag:
print('ignoring {} (prefix: {})'.format(k, the_prefix))
del pretrained_state_dict[k]
pretrained_state_dict_new = dict()
for k in list(pretrained_state_dict.keys()):
if '_orig_mod.' in k:
k_new = k.split('_orig_mod.')[1]
pretrained_state_dict_new[k_new] = pretrained_state_dict[k]
else:
pretrained_state_dict_new[k] = pretrained_state_dict[k]
load_state_model(self.model, pretrained_state_dict_new, self.ginfo)
# load_state_model(self.model, pretrained_state_dict, self.ginfo)
def prepare_data(self):
self.tmp.input_var = dict()
if self.config.sampler.batch_size == 1 and isinstance(self.tmp.input, list):
self.tmp.input[0]['image'] = self.tmp.input[0]['image'].unsqueeze(0) #### TODO: ugly hot fix for single gpu###
for k, v in self.tmp.input[0].items():
if isinstance(v, np.ndarray) or isinstance(v, str) or isinstance(v, int) or isinstance(v, DataContainer) or k == "img_metas" or k == "filename":
self.tmp.input_var[k] = v
elif not isinstance(v, list):
self.tmp.input_var[k] = v.cuda()
elif k == "instances":
self.tmp.input_var[k] = [_v.cuda() for _v in v]
else:
for k,v in self.tmp.input.items():
if isinstance(v, np.ndarray) or isinstance(v, str) or isinstance(v, int) or isinstance(v, DataContainer) or k == "img_metas" or k == "filename":
self.tmp.input_var[k] = v
elif not isinstance(v, list):
self.tmp.input_var[k] = v.cuda()
elif k == "instances":
self.tmp.input_var[k] = [_v.cuda() for _v in v]
else:
self.tmp.input_var[k] = v
# print(f" self.tmp.input: {self.tmp.input}")
def inference_on_dataset(self, model, evaluator):
"""
Run model on the data_loader and evaluate the metrics with evaluator.
Also benchmark the inference speed of `model.__call__` accurately.
The model will be used in eval mode.
Args:
model (callable): a callable which takes an object from
`data_loader` and returns some outputs.
If it's an nn.Module, it will be temporarily set to `eval` mode.
If you wish to evaluate a model in `training` mode instead, you can
wrap the given model and override its behavior of `.eval()` and `.train()`.
data_loader: an iterable object with a length.
The elements it generates will be the inputs to the model.
evaluator: the evaluator(s) to run. Use `None` if you only want to benchmark,
but don't want to do any evaluation.
Returns:
The return value of `evaluator.evaluate()`
"""
num_devices = self.C.world_size
total = len(self.test_loader) # inference data loader must have a fixed length
if self.C.rank == 0:
logger = self.logger
logger.info("Start inference on {} batches".format(total))
evaluator.reset()
num_warmup = min(5, total - 1)
start_time = time.perf_counter()
total_data_time = 0
total_compute_time = 0
total_eval_time = 0
with ExitStack() as stack:
if isinstance(model, nn.Module):
stack.enter_context(inference_context(model))
stack.enter_context(torch.no_grad())
start_data_time = time.perf_counter()
for idx, self.tmp.input in enumerate(self.test_loader):
total_data_time += time.perf_counter() - start_data_time
self.prepare_data()
if idx == num_warmup:
start_time = time.perf_counter()
total_data_time = 0
total_compute_time = 0
total_eval_time = 0
start_compute_time = time.perf_counter()
outputs = model(self.tmp.input_var, idx)
if torch.cuda.is_available():
torch.cuda.synchronize()
total_compute_time += time.perf_counter() - start_compute_time
start_eval_time = time.perf_counter()
evaluator.process(self.tmp.input_var, outputs)
total_eval_time += time.perf_counter() - start_eval_time
iters_after_start = idx + 1 - num_warmup * int(idx >= num_warmup)
data_seconds_per_iter = total_data_time / iters_after_start
compute_seconds_per_iter = total_compute_time / iters_after_start
eval_seconds_per_iter = total_eval_time / iters_after_start
total_seconds_per_iter = (time.perf_counter() - start_time) / iters_after_start
if idx >= num_warmup * 2 or compute_seconds_per_iter > 5:
eta = datetime.timedelta(seconds=int(total_seconds_per_iter * (total - idx - 1)))
self.logger.info(f"Inference done {idx + 1}/{total}. "
f"Dataloading: {data_seconds_per_iter:.4f} s/iter. "
f"Inference: {compute_seconds_per_iter:.4f} s/iter. "
f"Eval: {eval_seconds_per_iter:.4f} s/iter. "
f"Total: {total_seconds_per_iter:.4f} s/iter. "
f"ETA={eta}")
start_data_time = time.perf_counter()
# Measure the time only for this worker (before the synchronization barrier)
total_time = time.perf_counter() - start_time
total_time_str = str(datetime.timedelta(seconds=total_time))
# NOTE this format is parsed by grep
self.logger.info(
"Total inference time: {} ({:.6f} s / iter per device, on {} devices)".format(
total_time_str, total_time / (total - num_warmup), num_devices
)
)
total_compute_time_str = str(datetime.timedelta(seconds=int(total_compute_time)))
self.logger.info(
"Total inference pure compute time: {} ({:.6f} s / iter per device, on {} devices)".format(
total_compute_time_str, total_compute_time / (total - num_warmup), num_devices
)
)
results = evaluator.evaluate()
# An evaluator may return None when not in main process.
# Replace it by an empty dict instead to make it easier for downstream code to handle
if results is None:
results = {}
return results
def test_with_TTA(self): # more like a decorator
# In the end of training, run an evaluation with TTA.
# self.create_dataloader()
self.logger.info("Running inference with test-time augmentation ...")
model = SemanticSegmentorWithTTA(self.config.extra, self.model)
evaluator = SemSegEvaluator(dataset_name=self.ginfo.task_name, distributed=True,
output_dir=os.path.join(self.ckpt_path, "inference_TTA"), config=self.config)
res = self.test(model, evaluator=evaluator)
res = OrderedDict({k + "_TTA": v for k, v in res.items()})
return res
def test(self, model, evaluator=None):
if evaluator is None:
evaluator = SemSegEvaluator(dataset_name=self.ginfo.task_name, distributed=True,
output_dir=self.ckpt_path, config=self.config)
results = OrderedDict()
results_i = self.inference_on_dataset(model, evaluator)
results[self.ginfo.task_name] = results_i
if self.C.rank == 0:
assert isinstance(
results_i, dict
), "Evaluator must return a dict on the main process. Got {} instead.".format(
results_i
)
self.logger.info("Evaluation results for {} in csv format:".format(self.ginfo.task_name))
print_csv_format(results_i, self.logger)
if len(results) == 1:
results = list(results.values())[0]
return results
def run(self):
if self.config.dataset.type == 'COCOStuffSegDatasetDev':
results = self.test(self.model)
results.update(self.test_with_TTA())
elif 'ParsingDataset' in self.config.dataset.type:
if self.config.dataset.get('bce_cls_test',False):
evaluator = HumParEvaluator_bce_cls(dataset_name=self.ginfo.task_name, distributed=True,
output_dir=self.ckpt_path, config=self.config)
else:
evaluator = HumParMAEEvaluator(dataset_name=self.ginfo.task_name, distributed=True,
output_dir=self.ckpt_path, config=self.config)
results = self.test(self.model, evaluator=evaluator)
elif self.config.dataset.type in ['COCOPosDatasetDev', 'MultiPoseDatasetDev']:
self.config.evaluation.cfg.name2id = self.dataset.name2id
self.config.evaluation.cfg.dataset = self.dataset
evaluator = PoseEvaluator(dataset_name=self.ginfo.task_name, distributed=True,
output_dir=self.ckpt_path, config=self.config)
results = self.test(self.model, evaluator=evaluator)
elif self.config.dataset.type == 'MPIIPosDatasetDev':
# self.config.evaluation.cfg.name2id = self.dataset.name2id
self.config.evaluation.cfg.dataset = self.dataset
evaluator = MPIIPoseEvaluator(dataset_name=self.ginfo.task_name, distributed=True,
output_dir=self.ckpt_path, config=self.config)
results = self.test(self.model, evaluator=evaluator)
elif self.config.dataset.type in ['PedestrainDetectionDataset_v2', 'PedestrainDetectionDataset_v2demo']:
evaluator = PedDetMAEEvaluator(dataset_name=self.ginfo.task_name, distributed=True,
output_dir=self.ckpt_path, config=self.config)
results = self.test(self.model, evaluator=evaluator)
elif self.config.dataset.type == 'AttrDataset' or self.config.dataset.type == 'MultiAttrDataset':
# import pdb;pdb.set_trace()
evaluator = PedAttrMAEEvaluator(dataset_name=self.ginfo.task_name, distributed=True,
output_dir=self.ckpt_path, config=self.config)
results = self.test(self.model, evaluator=evaluator)
elif self.config.dataset.type in ['NTURGBDSkeletonDataset', 'GYMSkeletonDataset', 'UCLASkeletonDataset','mmSkeletonDataset']:
evaluator = SkeletonActionMAEEvaluator(dataset_name=self.ginfo.task_name, distributed=True,
output_dir=self.ckpt_path, config=self.config)
results = self.test(self.model, evaluator=evaluator)
elif self.config.dataset.type in ['CocoCaption', 'CocoCaptiondemo']:
evaluator = Image_Caption_Evaluator(dataset_name=self.ginfo.task_name, distributed=True,
output_dir=self.ckpt_path, config=self.config)
results = self.test(self.model, evaluator=evaluator)
elif self.config.dataset.type == 'MeshTSVYamlDataset':
evaluator = SMPLMAEEvaluator(dataset_name=self.ginfo.task_name,distributed=False,output_dir=self.ckpt_path, config=self.config)
results = self.test(self.model, evaluator=evaluator)
else:
raise NotImplementedError
print(f"** results: {results}")
default_collate_err_msg_format = ("default_collate: batch must contain tensors, numpy arrays, numbers, "
"dicts or lists; found {}")
np_str_obj_array_pattern = re.compile(r'[SaUO]')
def dev_collate(batch): # altered collate_fn to support 'Instance' object within batch
r"""
Function that takes in a batch of data and puts the elements within the batch
into a tensor with an additional outer dimension - batch size. The exact output type can be
a :class:`torch.Tensor`, a `Sequence` of :class:`torch.Tensor`, a
Collection of :class:`torch.Tensor`, or left unchanged, depending on the input type.
This is used as the default function for collation when
`batch_size` or `batch_sampler` is defined in :class:`~torch.utils.data.DataLoader`.
Here is the general input type (based on the type of the element within the batch) to output type mapping:
* :class:`torch.Tensor` -> :class:`torch.Tensor` (with an added outer dimension batch size)
* NumPy Arrays -> :class:`torch.Tensor`
* `float` -> :class:`torch.Tensor`
* `int` -> :class:`torch.Tensor`
* `str` -> `str` (unchanged)
* `bytes` -> `bytes` (unchanged)
* `Mapping[K, V_i]` -> `Mapping[K, dev_collate([V_1, V_2, ...])]`
* `NamedTuple[V1_i, V2_i, ...]` -> `NamedTuple[dev_collate([V1_1, V1_2, ...]), dev_collate([V2_1, V2_2, ...]), ...]`
* `Sequence[V1_i, V2_i, ...]` -> `Sequence[dev_collate([V1_1, V1_2, ...]), dev_collate([V2_1, V2_2, ...]), ...]`
Args:
batch: a single batch to be collated
Examples:
>>> # Example with a batch of `int`s:
>>> dev_collate([0, 1, 2, 3])
tensor([0, 1, 2, 3])
>>> # Example with a batch of `str`s:
>>> dev_collate(['a', 'b', 'c'])
['a', 'b', 'c']
>>> # Example with `Map` inside the batch:
>>> dev_collate([{'A': 0, 'B': 1}, {'A': 100, 'B': 100}])
{'A': tensor([ 0, 100]), 'B': tensor([ 1, 100])}
>>> # Example with `NamedTuple` inside the batch:
>>> Point = namedtuple('Point', ['x', 'y'])
>>> dev_collate([Point(0, 0), Point(1, 1)])
Point(x=tensor([0, 1]), y=tensor([0, 1]))
>>> # Example with `Tuple` inside the batch:
>>> dev_collate([(0, 1), (2, 3)])
[tensor([0, 2]), tensor([1, 3])]
>>> # Example with `List` inside the batch:
>>> dev_collate([[0, 1], [2, 3]])
[tensor([0, 2]), tensor([1, 3])]
"""
elem = batch[0]
elem_type = type(elem)
if isinstance(elem, torch.Tensor):
out = None
if torch.utils.data.get_worker_info() is not None:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum(x.numel() for x in batch)
storage = elem.storage()._new_shared(numel)
out = elem.new(storage).resize_(len(batch), *list(elem.size()))
return torch.stack(batch, 0, out=out)
elif isinstance(elem, Instances) or isinstance(elem, DataContainer): # ** special treatment for 'Instance' object elements
return batch
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
# array of string classes and object
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(default_collate_err_msg_format.format(elem.dtype))
return dev_collate([torch.as_tensor(b) for b in batch])
elif elem.shape == (): # scalars
return torch.as_tensor(batch)
elif isinstance(elem, float):
return torch.tensor(batch, dtype=torch.float64)
elif isinstance(elem, int):
return torch.tensor(batch)
elif isinstance(elem, str):
return batch
elif isinstance(elem, collections.abc.Mapping):
try:
return elem_type({key: dev_collate([d[key] for d in batch]) for key in elem})
except TypeError:
# The mapping type may not support `__init__(iterable)`.
return {key: dev_collate([d[key] for d in batch]) for key in elem}
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
return elem_type(*(dev_collate(samples) for samples in zip(*batch)))
elif isinstance(elem, collections.abc.Sequence):
# check to make sure that the elements in batch have consistent size
it = iter(batch)
elem_size = len(next(it))
if not all(len(elem) == elem_size for elem in it):
raise RuntimeError('each element in list of batch should be of equal size')
transposed = list(zip(*batch)) # It may be accessed twice, so we use a list.
if isinstance(elem, tuple):
return [dev_collate(samples) for samples in transposed] # Backwards compatibility.
else:
try:
return elem_type([dev_collate(samples) for samples in transposed])
except TypeError:
# The sequence type may not support `__init__(iterable)` (e.g., `range`).
return [dev_collate(samples) for samples in transposed]
raise TypeError(default_collate_err_msg_format.format(elem_type))
def det_collate(batch): # altered collate_fn to support 'Instance' object within batch
r"""
Function that takes in a batch of data and puts the elements within the batch
into a tensor with an additional outer dimension - batch size. The exact output type can be
a :class:`torch.Tensor`, a `Sequence` of :class:`torch.Tensor`, a
Collection of :class:`torch.Tensor`, or left unchanged, depending on the input type.
This is used as the default function for collation when
`batch_size` or `batch_sampler` is defined in :class:`~torch.utils.data.DataLoader`.
Here is the general input type (based on the type of the element within the batch) to output type mapping:
* :class:`torch.Tensor` -> :class:`torch.Tensor` (with an added outer dimension batch size)
* NumPy Arrays -> :class:`torch.Tensor`
* `float` -> :class:`torch.Tensor`
* `int` -> :class:`torch.Tensor`
* `str` -> `str` (unchanged)
* `bytes` -> `bytes` (unchanged)
* `Mapping[K, V_i]` -> `Mapping[K, det_collate([V_1, V_2, ...])]`
* `NamedTuple[V1_i, V2_i, ...]` -> `NamedTuple[det_collate([V1_1, V1_2, ...]), det_collate([V2_1, V2_2, ...]), ...]`
* `Sequence[V1_i, V2_i, ...]` -> `Sequence[det_collate([V1_1, V1_2, ...]), det_collate([V2_1, V2_2, ...]), ...]`
Args:
batch: a single batch to be collated
Examples:
>>> # Example with a batch of `int`s:
>>> det_collate([0, 1, 2, 3])
tensor([0, 1, 2, 3])
>>> # Example with a batch of `str`s:
>>> det_collate(['a', 'b', 'c'])
['a', 'b', 'c']
>>> # Example with `Map` inside the batch:
>>> det_collate([{'A': 0, 'B': 1}, {'A': 100, 'B': 100}])
{'A': tensor([ 0, 100]), 'B': tensor([ 1, 100])}
>>> # Example with `NamedTuple` inside the batch:
>>> Point = namedtuple('Point', ['x', 'y'])
>>> det_collate([Point(0, 0), Point(1, 1)])
Point(x=tensor([0, 1]), y=tensor([0, 1]))
>>> # Example with `Tuple` inside the batch:
>>> det_collate([(0, 1), (2, 3)])
[tensor([0, 2]), tensor([1, 3])]
>>> # Example with `List` inside the batch:
>>> det_collate([[0, 1], [2, 3]])
[tensor([0, 2]), tensor([1, 3])]
"""
elem = batch[0]
elem_type = type(elem)
if isinstance(elem, torch.Tensor):
if elem.ndim == 3:
_shape1 = [e.shape[1] for e in batch]
_shape2 = [e.shape[2] for e in batch]
if _shape1.count(_shape1[0])==len(_shape1) and _shape2.count(_shape2[0])==len(_shape2):
# for tasks other than detection, nested is not needed
if len(batch)<=5 :
return nested_tensor_from_tensor_list(batch)
out = None
if torch.utils.data.get_worker_info() is not None:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum(x.numel() for x in batch)
storage = elem.storage()._new_shared(numel)
out = elem.new(storage).resize_(len(batch), *list(elem.size()))
return torch.stack(batch, 0, out=out)
else:
return nested_tensor_from_tensor_list(batch)
else:
out = None
if torch.utils.data.get_worker_info() is not None:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum(x.numel() for x in batch)
storage = elem.storage()._new_shared(numel)
out = elem.new(storage).resize_(len(batch), *list(elem.size()))
return torch.stack(batch, 0, out=out)
elif isinstance(elem, Instances) or isinstance(elem, DataContainer): # ** special treatment for 'Instance' object elements
return batch
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
# array of string classes and object
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(default_collate_err_msg_format.format(elem.dtype))
return det_collate([torch.as_tensor(b) for b in batch])
elif elem.shape == (): # scalars
return torch.as_tensor(batch)
elif isinstance(elem, float):
return torch.tensor(batch, dtype=torch.float64)
elif isinstance(elem, int):
return torch.tensor(batch)
elif isinstance(elem, str):
return batch
elif isinstance(elem, collections.abc.Mapping):
try:
return elem_type({key: det_collate([d[key] for d in batch]) for key in elem})
except TypeError:
# The mapping type may not support `__init__(iterable)`.
return {key: det_collate([d[key] for d in batch]) for key in elem}
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
return elem_type(*(det_collate(samples) for samples in zip(*batch)))
elif isinstance(elem, collections.abc.Sequence):
# check to make sure that the elements in batch have consistent size
it = iter(batch)
elem_size = len(next(it))
if not all(len(elem) == elem_size for elem in it):
raise RuntimeError('each element in list of batch should be of equal size')
transposed = list(zip(*batch)) # It may be accessed twice, so we use a list.
if isinstance(elem, tuple):
return [det_collate(samples) for samples in transposed] # Backwards compatibility.
else:
try:
return elem_type([det_collate(samples) for samples in transposed])
except TypeError:
# The sequence type may not support `__init__(iterable)` (e.g., `range`).
return [det_collate(samples) for samples in transposed]
raise TypeError(default_collate_err_msg_format.format(elem_type))
def fixed_det_collate(batch): # altered collate_fn to support 'Instance' object within batch
r"""
Function that takes in a batch of data and puts the elements within the batch
into a tensor with an additional outer dimension - batch size. The exact output type can be
a :class:`torch.Tensor`, a `Sequence` of :class:`torch.Tensor`, a
Collection of :class:`torch.Tensor`, or left unchanged, depending on the input type.
This is used as the default function for collation when
`batch_size` or `batch_sampler` is defined in :class:`~torch.utils.data.DataLoader`.
Here is the general input type (based on the type of the element within the batch) to output type mapping:
* :class:`torch.Tensor` -> :class:`torch.Tensor` (with an added outer dimension batch size)
* NumPy Arrays -> :class:`torch.Tensor`
* `float` -> :class:`torch.Tensor`
* `int` -> :class:`torch.Tensor`
* `str` -> `str` (unchanged)
* `bytes` -> `bytes` (unchanged)
* `Mapping[K, V_i]` -> `Mapping[K, det_collate([V_1, V_2, ...])]`
* `NamedTuple[V1_i, V2_i, ...]` -> `NamedTuple[det_collate([V1_1, V1_2, ...]), det_collate([V2_1, V2_2, ...]), ...]`
* `Sequence[V1_i, V2_i, ...]` -> `Sequence[det_collate([V1_1, V1_2, ...]), det_collate([V2_1, V2_2, ...]), ...]`
Args:
batch: a single batch to be collated
Examples:
>>> # Example with a batch of `int`s:
>>> det_collate([0, 1, 2, 3])
tensor([0, 1, 2, 3])
>>> # Example with a batch of `str`s:
>>> det_collate(['a', 'b', 'c'])
['a', 'b', 'c']
>>> # Example with `Map` inside the batch:
>>> det_collate([{'A': 0, 'B': 1}, {'A': 100, 'B': 100}])
{'A': tensor([ 0, 100]), 'B': tensor([ 1, 100])}
>>> # Example with `NamedTuple` inside the batch:
>>> Point = namedtuple('Point', ['x', 'y'])
>>> det_collate([Point(0, 0), Point(1, 1)])
Point(x=tensor([0, 1]), y=tensor([0, 1]))
>>> # Example with `Tuple` inside the batch:
>>> det_collate([(0, 1), (2, 3)])
[tensor([0, 2]), tensor([1, 3])]
>>> # Example with `List` inside the batch:
>>> det_collate([[0, 1], [2, 3]])
[tensor([0, 2]), tensor([1, 3])]
"""
elem = batch[0]
elem_type = type(elem)
if isinstance(elem, torch.Tensor):
if elem.ndim == 3:
return nested_tensor_from_tensor_list_fix_shape(batch)
else:
out = None
if torch.utils.data.get_worker_info() is not None:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum(x.numel() for x in batch)
storage = elem.storage()._new_shared(numel)
out = elem.new(storage).resize_(len(batch), *list(elem.size()))
return torch.stack(batch, 0, out=out)
elif isinstance(elem, Instances) or isinstance(elem, DataContainer): # ** special treatment for 'Instance' object elements
return batch
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
# array of string classes and object
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(default_collate_err_msg_format.format(elem.dtype))
return det_collate([torch.as_tensor(b) for b in batch])
elif elem.shape == (): # scalars
return torch.as_tensor(batch)
elif isinstance(elem, float):
return torch.tensor(batch, dtype=torch.float64)
elif isinstance(elem, int):
return torch.tensor(batch)
elif isinstance(elem, str):
return batch
elif isinstance(elem, collections.abc.Mapping):
try:
return elem_type({key: det_collate([d[key] for d in batch]) for key in elem})
except TypeError:
# The mapping type may not support `__init__(iterable)`.
return {key: det_collate([d[key] for d in batch]) for key in elem}
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
return elem_type(*(det_collate(samples) for samples in zip(*batch)))
elif isinstance(elem, collections.abc.Sequence):
# check to make sure that the elements in batch have consistent size
it = iter(batch)
elem_size = len(next(it))
if not all(len(elem) == elem_size for elem in it):
raise RuntimeError('each element in list of batch should be of equal size')
transposed = list(zip(*batch)) # It may be accessed twice, so we use a list.
if isinstance(elem, tuple):
return [det_collate(samples) for samples in transposed] # Backwards compatibility.
else:
try:
return elem_type([det_collate(samples) for samples in transposed])
except TypeError:
# The sequence type may not support `__init__(iterable)` (e.g., `range`).
return [det_collate(samples) for samples in transposed]
raise TypeError(default_collate_err_msg_format.format(elem_type))
def naive_collate(batch):
return batch
@contextmanager
def inference_context(model):
"""
A context where the model is temporarily changed to eval mode,
and restored to previous mode afterwards.
Args:
model: a torch Module
"""
training_mode = model.training
model.eval()
yield
model.train(training_mode)
def print_csv_format(results, logger):
"""
Print main metrics in a format similar to Detectron,
so that they are easy to copypaste into a spreadsheet.
Args:
results (OrderedDict[dict]): task_name -> {metric -> score}
unordered dict can also be printed, but in arbitrary order
"""
assert isinstance(results, Mapping) or not len(results), results
for task, res in results.items():
if isinstance(res, Mapping):
# Don't print "AP-category" metrics since they are usually not tracked.
important_res = [(k, v) for k, v in res.items() if "-" not in k]
logger.info("copypaste: Task: {}".format(task))
logger.info("copypaste: " + ",".join([k[0] for k in important_res]))
logger.info("copypaste: " + ",".join(["{0:.4f}".format(k[1]) for k in important_res]))
else:
logger.info(f"copypaste: {task}={res}")
|