File size: 1,790 Bytes
9d5fa6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: xlm-ate-nobi-mul-nes
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-ate-nobi-mul-nes

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7376
- Precision: 0.0
- Recall: 0.0
- F1: 0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--:|
| 0.3037        | 0.45  | 500  | 0.4545          | 0.0       | 0.0    | 0  |
| 0.2008        | 0.91  | 1000 | 0.4427          | 0.0       | 0.0    | 0  |
| 0.1567        | 1.36  | 1500 | 0.5872          | 0.0       | 0.0    | 0  |
| 0.1402        | 1.82  | 2000 | 0.6592          | 0.0       | 0.0    | 0  |
| 0.1218        | 2.27  | 2500 | 0.7135          | 0.0       | 0.0    | 0  |
| 0.1104        | 2.72  | 3000 | 0.7376          | 0.0       | 0.0    | 0  |


### Framework versions

- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2