File size: 1,262 Bytes
8545d36 1109dce 457ef57 1109dce 457ef57 1109dce aa7110d ba30492 8545d36 e45760a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
---
language:
- vi
tags:
- classification
widget:
- text: "Xấu vcl"
example_title: "Công kích"
- text: "Đồ ngu"
example_title: "Thù ghét"
- text: "Xin chào chúc một ngày tốt lành"
example_title: "Normal"
---
## [PhoBert](https://huggingface.co/vinai/phobert-base/tree/main) finetuned version for hate speech detection
## Dataset
- [**VLSP2019**](https://github.com/sonlam1102/vihsd): Hate Speech Detection on Social Networks Dataset
- [**ViHSD**](https://vlsp.org.vn/vlsp2019/eval/hsd): Vietnamese Hate Speech Detection dataset
## Class name
- LABEL_0 : **Normal**
- LABEL_1 : **OFFENSIVE**
- LABEL_2 : **HATE**
## Usage example with **TextClassificationPipeline**
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, TextClassificationPipeline
model = AutoModelForSequenceClassification.from_pretrained("tsdocode/phobert-finetune-hatespeech", num_labels=3)
tokenizer = AutoTokenizer.from_pretrained("tsdocode/phobert-finetune-hatespeech")
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
# outputs a list of dicts like [[{'label': 'NEGATIVE', 'score': 0.0001223755971295759}, {'label': 'POSITIVE', 'score': 0.9998776316642761}]]
pipe("đồ ngu")
``` |