tsavage68's picture
End of training
df03bcc verified
metadata
library_name: transformers
license: apache-2.0
base_model: tsavage68/Na_M2_1000steps_1e7_SFT
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: Na_M2_300steps_1e8rate_01beta_cSFTDPO
    results: []

Na_M2_300steps_1e8rate_01beta_cSFTDPO

This model is a fine-tuned version of tsavage68/Na_M2_1000steps_1e7_SFT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6653
  • Rewards/chosen: 0.0172
  • Rewards/rejected: -0.0396
  • Rewards/accuracies: 0.9100
  • Rewards/margins: 0.0568
  • Logps/rejected: -80.3192
  • Logps/chosen: -47.9599
  • Logits/rejected: -2.5356
  • Logits/chosen: -2.5482

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-08
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 300

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6929 0.2667 50 0.6931 -0.0010 -0.0014 0.5700 0.0003 -79.9371 -48.1427 -2.5355 -2.5481
0.6881 0.5333 100 0.6832 0.0062 -0.0142 0.6900 0.0204 -80.0656 -48.0704 -2.5357 -2.5482
0.67 0.8 150 0.6690 0.0151 -0.0343 0.9000 0.0494 -80.2661 -47.9813 -2.5359 -2.5485
0.6726 1.0667 200 0.6633 0.0167 -0.0444 0.9500 0.0611 -80.3677 -47.9656 -2.5356 -2.5482
0.6615 1.3333 250 0.6653 0.0172 -0.0396 0.9100 0.0568 -80.3192 -47.9599 -2.5356 -2.5482
0.667 1.6 300 0.6653 0.0172 -0.0396 0.9100 0.0568 -80.3192 -47.9599 -2.5356 -2.5482

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1