vit-pneumonia / README.md
trpakov's picture
update model card README.md
5fad412
|
raw
history blame
2.31 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - chest-xray-classification
metrics:
  - accuracy
model-index:
  - name: vit-pneumonia
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: chest-xray-classification
          type: chest-xray-classification
          config: full
          split: validation
          args: full
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.976824034334764

vit-pneumonia

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the chest-xray-classification dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1086
  • Accuracy: 0.9768

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.25
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0357 1.0 192 0.0955 0.9691
0.0404 2.0 384 0.0720 0.9751
0.0546 3.0 576 0.2275 0.9468
0.0113 4.0 768 0.1386 0.9648
0.0101 5.0 960 0.1212 0.9708
0.0003 6.0 1152 0.0929 0.9777
0.0002 7.0 1344 0.1051 0.9777
0.0002 8.0 1536 0.1075 0.9777
0.0002 9.0 1728 0.1084 0.9768
0.0002 10.0 1920 0.1086 0.9768

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2