trissondon's picture
End of training
9c31cc7
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: ts-distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.83
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ts-distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6580
- Accuracy: 0.83
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.9712 | 1.0 | 113 | 1.9122 | 0.47 |
| 1.2031 | 2.0 | 226 | 1.3221 | 0.61 |
| 0.9693 | 3.0 | 339 | 0.9988 | 0.72 |
| 0.871 | 4.0 | 452 | 0.8685 | 0.77 |
| 0.4698 | 5.0 | 565 | 0.7312 | 0.81 |
| 0.4306 | 6.0 | 678 | 0.7236 | 0.78 |
| 0.2482 | 7.0 | 791 | 0.8157 | 0.76 |
| 0.2672 | 8.0 | 904 | 0.5917 | 0.85 |
| 0.1592 | 9.0 | 1017 | 0.6369 | 0.83 |
| 0.1181 | 10.0 | 1130 | 0.6580 | 0.83 |
### Framework versions
- Transformers 4.36.0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0