lewtun's picture
lewtun HF staff
Add evaluation results on wikiann dataset (#1)
39aaafd
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
datasets:
- wikiann
model-index:
- name: xlm-roberta-base-finetuned-panx-all
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: wikiann
type: wikiann
config: en
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.843189280620875
verified: true
- name: Precision
type: precision
value: 0.8410061269097046
verified: true
- name: Recall
type: recall
value: 0.8568527450211155
verified: true
- name: F1
type: f1
value: 0.8488554853827908
verified: true
- name: loss
type: loss
value: 0.6632214784622192
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-all
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the PAN-X dataset. The model is trained in Chapter 4: Multilingual Named Entity Recognition in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/04_multilingual-ner.ipynb).
It achieves the following results on the evaluation set:
- Loss: 0.1739
- F1: 0.8581
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2912 | 1.0 | 835 | 0.1883 | 0.8238 |
| 0.1548 | 2.0 | 1670 | 0.1738 | 0.8480 |
| 0.101 | 3.0 | 2505 | 0.1739 | 0.8581 |
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.9.1+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3