File size: 8,557 Bytes
28fd7c1 664c81e 28fd7c1 664c81e 28fd7c1 664c81e 28fd7c1 664c81e 28fd7c1 664c81e 28fd7c1 664c81e 28fd7c1 664c81e 28fd7c1 664c81e 28fd7c1 664c81e 28fd7c1 664c81e 28fd7c1 664c81e 28fd7c1 664c81e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
from string import punctuation
import numpy as np
import torch
from sklearn.cluster import KMeans
from model.named_entities import get_named_entities
punctuation = [c for c in punctuation if c != "_"]
punctuation += ["“", "–", ",", "…", "”", "–"]
ethnicity_dict_map = {"H'Mông": "HMông",
"H'mông": "HMông",
"H’mông": "HMông",
"H’Mông": "HMông",
"H’MÔNG": "HMông",
"M'Nông": "MNông",
"M'nông": "MNông",
"M'NÔNG": "MNông",
"M’Nông": "MNông",
"M’NÔNG": "MNông",
"K’Ho": "KHo",
"K’Mẻo": "KMẻo"}
def sub_sentence(sentence):
sent = []
start_index = 0
while start_index < len(sentence):
idx_list = []
for p in punctuation:
idx = sentence.find(p, start_index)
if idx != -1:
idx_list.append(idx)
if len(idx_list) == 0:
sent.append(sentence[start_index:].strip())
break
end_index = min(idx_list)
subsent = sentence[start_index:end_index].strip()
if len(subsent) > 0:
sent.append(subsent)
start_index = end_index + 1
return sent
def check_for_stopwords(ngram, stopwords_ls):
for ngram_elem in ngram.split():
for w in stopwords_ls:
if ngram_elem == w: # or ngram_elem.lower() == w:
return True
return False
def compute_ngram_list(segmentised_doc, ngram_n, stopwords_ls, subsentences=True):
if subsentences:
output_sub_sentences = []
for sentence in segmentised_doc:
output_sub_sentences += sub_sentence(sentence)
else:
output_sub_sentences = segmentised_doc
ngram_list = []
for sentence in output_sub_sentences:
sent = sentence.split()
for i in range(len(sent) - ngram_n + 1):
ngram = ' '.join(sent[i:i + ngram_n])
if ngram not in ngram_list and not check_for_stopwords(ngram, stopwords_ls):
ngram_list.append(ngram)
final_ngram_list = []
for ngram in ngram_list:
contains_number = False
for char in ngram:
if char.isnumeric():
contains_number = True
break
if not contains_number:
final_ngram_list.append(ngram)
return final_ngram_list
def cosine_similarity(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
def get_doc_embeddings(segmentised_doc, tokenizer, phobert, stopwords):
doc_embedding = torch.zeros(size=(len(segmentised_doc), 768))
for i, sentence in enumerate(segmentised_doc):
sent_removed_stopwords = ' '.join([word for word in sentence.split() if word not in stopwords])
sentence_embedding = tokenizer.encode(sent_removed_stopwords)
input_ids = torch.tensor([sentence_embedding])
with torch.no_grad():
features = phobert(input_ids)
if i == 0:
doc_embedding[i, :] = 2 * features.pooler_output.flatten()
else:
doc_embedding[i, :] = features.pooler_output.flatten()
return torch.mean(doc_embedding, axis=0)
def get_segmentised_doc(nlp, rdrsegmenter, title, doc):
for i, j in ethnicity_dict_map.items():
if title is not None:
title = title.replace(i, j)
doc = doc.replace(i, j)
segmentised_doc = rdrsegmenter.word_segment(doc)
if title is not None:
segmentised_doc = rdrsegmenter.word_segment(title) + rdrsegmenter.word_segment(doc)
ne_ls = set(get_named_entities(nlp, doc))
segmentised_doc_ne = []
for sent in segmentised_doc:
for ne in ne_ls:
sent = sent.replace(ne, '_'.join(ne.split()))
segmentised_doc_ne.append(sent)
return ne_ls, segmentised_doc_ne
def compute_ngram_embeddings(tokenizer, phobert, ngram_list):
ngram_embeddings = {}
for ngram in ngram_list:
ngram_copy = ngram
if ngram.isupper():
ngram_copy = ngram.lower()
word_embedding = tokenizer.encode(ngram_copy)
input_ids = torch.tensor([word_embedding])
with torch.no_grad():
word_features = phobert(input_ids)
ngram_embeddings[ngram] = word_features.pooler_output
return ngram_embeddings
def compute_ngram_similarity(ngram_list, ngram_embeddings, doc_embedding):
ngram_similarity_dict = {}
for ngram in ngram_list:
similarity_score = cosine_similarity(ngram_embeddings[ngram], doc_embedding.T).flatten()[0]
# similarity_score = normalised_cosine_similarity(ngram_embeddings[ngram], doc_embedding.T).flatten()[0]
ngram_similarity_dict[ngram] = similarity_score
return ngram_similarity_dict
def diversify_result_kmeans(ngram_result, ngram_embeddings, top_n=5):
best_ngrams = sorted(ngram_result, key=ngram_result.get, reverse=True)[:top_n * 4]
best_ngram_embeddings = np.array([ngram_embeddings[ngram] for ngram in best_ngrams]).squeeze()
vote = {}
for niter in range(100):
kmeans = KMeans(n_clusters=top_n, init='k-means++', random_state=niter * 2, n_init="auto").fit(
best_ngram_embeddings)
kmeans_result = kmeans.labels_
res = {}
for i in range(len(kmeans_result)):
if kmeans_result[i] not in res:
res[kmeans_result[i]] = []
res[kmeans_result[i]].append((best_ngrams[i], ngram_result[best_ngrams[i]]))
final_result = [res[k][0] for k in res]
for keyword in final_result:
if keyword not in vote:
vote[keyword] = 0
vote[keyword] += 1
diversify_result_ls = sorted(vote, key=vote.get, reverse=True)
return diversify_result_ls[:top_n]
def remove_duplicates(ngram_result):
to_remove = set()
for ngram in ngram_result:
for ngram2 in ngram_result:
if ngram not in to_remove and ngram != ngram2 and ngram.lower() == ngram2.lower():
new_score = np.mean([ngram_result[ngram], ngram_result[ngram2]])
ngram_result[ngram] = new_score
to_remove.add(ngram2)
for ngram in to_remove:
ngram_result.pop(ngram)
return ngram_result
def compute_filtered_text(annotator, title, text):
annotated = annotator.annotate_text(text)
if title is not None:
annotated = annotator.annotate_text(title + '. ' + text)
filtered_sentences = []
keep_tags = ['N', 'Np', 'V', 'Nc']
for key in annotated.keys():
# print(key,annotated[key])
sent = ' '.join([dict_['wordForm'] for dict_ in annotated[key] if dict_['posTag'] in keep_tags])
filtered_sentences.append(sent)
return filtered_sentences
def get_candidate_ngrams(segmentised_doc, filtered_segmentised_doc, ngram_n, stopwords_ls):
# get actual ngrams
actual_ngram_list = compute_ngram_list(segmentised_doc, ngram_n, stopwords_ls, subsentences=True)
# get filtered ngrams
filtered_ngram_list = compute_ngram_list(filtered_segmentised_doc, ngram_n, stopwords_ls,
subsentences=False)
# get candiate ngrams
candidate_ngram = [ngram for ngram in filtered_ngram_list if ngram in actual_ngram_list]
return candidate_ngram
def limit_minimum_frequency(doc_segmentised, ngram_list, min_freq=1):
ngram_dict_freq = {}
for ngram in ngram_list:
ngram_n = len(ngram.split())
count = 0
for sentence in doc_segmentised:
sent = sentence.split()
# print(sent)
for i in range(len(sent) - ngram_n + 1):
pair = ' '.join(sent[i:i + ngram_n])
# print(pair, ngram)
if pair == ngram:
count += 1
# print(ngram, count)
if count >= min_freq:
ngram_dict_freq[ngram] = count
return ngram_dict_freq
def remove_overlapping_ngrams(ngram_list):
to_remove = set()
for ngram1 in ngram_list:
for ngram2 in ngram_list:
if len(ngram1.split()) > len(ngram2.split()) and (ngram1.startswith(ngram2) or ngram1.endswith(ngram2)):
# print(ngram1, ngram2)
# print()
to_remove.add(ngram2)
# print("To removed")
# print(to_remove)
for kw in to_remove:
ngram_list.remove(kw)
return ngram_list
|