File size: 22,851 Bytes
34097e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
'''
Hijack version of kohya-ss/additional_networks/scripts/lora_compvis.py
'''
# LoRA network module
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
import copy
import math
import re
from typing import NamedTuple
import torch
from locon import LoConModule
class LoRAInfo(NamedTuple):
lora_name: str
module_name: str
module: torch.nn.Module
multiplier: float
dim: int
alpha: float
def create_network_and_apply_compvis(du_state_dict, multiplier_tenc, multiplier_unet, text_encoder, unet, **kwargs):
# get device and dtype from unet
for module in unet.modules():
if module.__class__.__name__ == "Linear":
param: torch.nn.Parameter = module.weight
# device = param.device
dtype = param.dtype
break
# get dims (rank) and alpha from state dict
# currently it is assumed all LoRA have same alpha. alpha may be different in future.
network_alpha = None
conv_alpha = None
network_dim = None
conv_dim = None
for key, value in du_state_dict.items():
if network_alpha is None and 'alpha' in key:
network_alpha = value
if network_dim is None and 'lora_down' in key and len(value.size()) == 2:
network_dim = value.size()[0]
if network_alpha is not None and network_dim is not None:
break
if network_alpha is None:
network_alpha = network_dim
print(f"dimension: {network_dim},\n"
f"alpha: {network_alpha},\n"
f"multiplier_unet: {multiplier_unet},\n"
f"multiplier_tenc: {multiplier_tenc}"
)
if network_dim is None:
print(f"The selected model is not LoRA or not trained by `sd-scripts`?")
network_dim = 4
network_alpha = 1
# create, apply and load weights
network = LoConNetworkCompvis(
text_encoder, unet, du_state_dict,
multiplier_tenc = multiplier_tenc,
multiplier_unet = multiplier_unet,
)
state_dict = network.apply_lora_modules(du_state_dict) # some weights are applied to text encoder
network.to(dtype) # with this, if error comes from next line, the model will be used
info = network.load_state_dict(state_dict, strict=False)
# remove redundant warnings
if len(info.missing_keys) > 4:
missing_keys = []
alpha_count = 0
for key in info.missing_keys:
if 'alpha' not in key:
missing_keys.append(key)
else:
if alpha_count == 0:
missing_keys.append(key)
alpha_count += 1
if alpha_count > 1:
missing_keys.append(
f"... and {alpha_count-1} alphas. The model doesn't have alpha, use dim (rannk) as alpha. You can ignore this message.")
info = torch.nn.modules.module._IncompatibleKeys(missing_keys, info.unexpected_keys)
return network, info
class LoConNetworkCompvis(torch.nn.Module):
# UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"]
# TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
LOCON_TARGET = ["ResBlock", "Downsample", "Upsample"]
UNET_TARGET_REPLACE_MODULE = ["SpatialTransformer"] + LOCON_TARGET # , "Attention"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["ResidualAttentionBlock", "CLIPAttention", "CLIPMLP"]
LORA_PREFIX_UNET = 'lora_unet'
LORA_PREFIX_TEXT_ENCODER = 'lora_te'
@classmethod
def convert_diffusers_name_to_compvis(cls, v2, du_name):
"""
convert diffusers's LoRA name to CompVis
"""
cv_name = None
if "lora_unet_" in du_name:
m = re.search(r"_down_blocks_(\d+)_attentions_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_attn_index = int(m.group(2))
du_suffix = m.group(3)
cv_index = 1 + du_block_index * 3 + du_attn_index # 1,2, 4,5, 7,8
cv_name = f"lora_unet_input_blocks_{cv_index}_1_{du_suffix}"
return cv_name
m = re.search(r"_mid_block_attentions_(\d+)_(.+)", du_name)
if m:
du_suffix = m.group(2)
cv_name = f"lora_unet_middle_block_1_{du_suffix}"
return cv_name
m = re.search(r"_up_blocks_(\d+)_attentions_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_attn_index = int(m.group(2))
du_suffix = m.group(3)
cv_index = du_block_index * 3 + du_attn_index # 3,4,5, 6,7,8, 9,10,11
cv_name = f"lora_unet_output_blocks_{cv_index}_1_{du_suffix}"
return cv_name
m = re.search(r"_down_blocks_(\d+)_resnets_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_res_index = int(m.group(2))
du_suffix = m.group(3)
cv_suffix = {
'conv1': 'in_layers_2',
'conv2': 'out_layers_3',
'time_emb_proj': 'emb_layers_1',
'conv_shortcut': 'skip_connection'
}[du_suffix]
cv_index = 1 + du_block_index * 3 + du_res_index # 1,2, 4,5, 7,8
cv_name = f"lora_unet_input_blocks_{cv_index}_0_{cv_suffix}"
return cv_name
m = re.search(r"_down_blocks_(\d+)_downsamplers_0_conv", du_name)
if m:
block_index = int(m.group(1))
cv_index = 3 + block_index * 3
cv_name = f"lora_unet_input_blocks_{cv_index}_0_op"
return cv_name
m = re.search(r"_mid_block_resnets_(\d+)_(.+)", du_name)
if m:
index = int(m.group(1))
du_suffix = m.group(2)
cv_suffix = {
'conv1': 'in_layers_2',
'conv2': 'out_layers_3',
'time_emb_proj': 'emb_layers_1',
'conv_shortcut': 'skip_connection'
}[du_suffix]
cv_name = f"lora_unet_middle_block_{index*2}_{cv_suffix}"
return cv_name
m = re.search(r"_up_blocks_(\d+)_resnets_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_res_index = int(m.group(2))
du_suffix = m.group(3)
cv_suffix = {
'conv1': 'in_layers_2',
'conv2': 'out_layers_3',
'time_emb_proj': 'emb_layers_1',
'conv_shortcut': 'skip_connection'
}[du_suffix]
cv_index = du_block_index * 3 + du_res_index # 1,2, 4,5, 7,8
cv_name = f"lora_unet_output_blocks_{cv_index}_0_{cv_suffix}"
return cv_name
m = re.search(r"_up_blocks_(\d+)_upsamplers_0_conv", du_name)
if m:
block_index = int(m.group(1))
cv_index = block_index * 3 + 2
cv_name = f"lora_unet_output_blocks_{cv_index}_{bool(block_index)+1}_conv"
return cv_name
elif "lora_te_" in du_name:
m = re.search(r"_model_encoder_layers_(\d+)_(.+)", du_name)
if m:
du_block_index = int(m.group(1))
du_suffix = m.group(2)
cv_index = du_block_index
if v2:
if 'mlp_fc1' in du_suffix:
cv_name = f"lora_te_wrapped_model_transformer_resblocks_{cv_index}_{du_suffix.replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in du_suffix:
cv_name = f"lora_te_wrapped_model_transformer_resblocks_{cv_index}_{du_suffix.replace('mlp_fc2', 'mlp_c_proj')}"
elif 'self_attn':
# handled later
cv_name = f"lora_te_wrapped_model_transformer_resblocks_{cv_index}_{du_suffix.replace('self_attn', 'attn')}"
else:
cv_name = f"lora_te_wrapped_transformer_text_model_encoder_layers_{cv_index}_{du_suffix}"
assert cv_name is not None, f"conversion failed: {du_name}. the model may not be trained by `sd-scripts`."
return cv_name
@classmethod
def convert_state_dict_name_to_compvis(cls, v2, state_dict):
"""
convert keys in state dict to load it by load_state_dict
"""
new_sd = {}
for key, value in state_dict.items():
tokens = key.split('.')
compvis_name = LoConNetworkCompvis.convert_diffusers_name_to_compvis(v2, tokens[0])
new_key = compvis_name + '.' + '.'.join(tokens[1:])
new_sd[new_key] = value
return new_sd
def __init__(self, text_encoder, unet, du_state_dict, multiplier_tenc=1.0, multiplier_unet=1.0) -> None:
super().__init__()
self.multiplier_unet = multiplier_unet
self.multiplier_tenc = multiplier_tenc
# create module instances
for name, module in text_encoder.named_modules():
for child_name, child_module in module.named_modules():
if child_module.__class__.__name__ == 'MultiheadAttention':
self.v2 = True
break
else:
continue
break
else:
self.v2 = False
comp_state_dict = {}
def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules, multiplier):
nonlocal comp_state_dict
loras = []
replaced_modules = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
layer = child_module.__class__.__name__
lora_name = prefix + '.' + name + '.' + child_name
lora_name = lora_name.replace('.', '_')
if layer == "Linear" or layer == "Conv2d":
if '_resblocks_23_' in lora_name: # ignore last block in StabilityAi Text Encoder
break
if f'{lora_name}.lora_down.weight' not in comp_state_dict:
if module.__class__.__name__ in LoConNetworkCompvis.LOCON_TARGET:
continue
else:
print(f'Cannot find: "{lora_name}", skipped')
continue
rank = comp_state_dict[f'{lora_name}.lora_down.weight'].shape[0]
alpha = comp_state_dict.get(f'{lora_name}.alpha', torch.tensor(rank)).item()
lora = LoConModule(lora_name, child_module, multiplier, rank, alpha)
loras.append(lora)
replaced_modules.append(child_module)
elif child_module.__class__.__name__ == "MultiheadAttention":
# make four modules: not replacing forward method but merge weights
self.v2 = True
for suffix in ['q', 'k', 'v', 'out']:
module_name = prefix + '.' + name + '.' + child_name # ~.attn
module_name = module_name.replace('.', '_')
if '_resblocks_23_' in module_name: # ignore last block in StabilityAi Text Encoder
break
lora_name = module_name + '_' + suffix
lora_info = LoRAInfo(lora_name, module_name, child_module, multiplier, 0, 0)
loras.append(lora_info)
replaced_modules.append(child_module)
return loras, replaced_modules
for k,v in LoConNetworkCompvis.convert_state_dict_name_to_compvis(self.v2, du_state_dict).items():
comp_state_dict[k] = v
self.text_encoder_loras, te_rep_modules = create_modules(
LoConNetworkCompvis.LORA_PREFIX_TEXT_ENCODER,
text_encoder,
LoConNetworkCompvis.TEXT_ENCODER_TARGET_REPLACE_MODULE,
self.multiplier_tenc
)
print(f"create LoCon for Text Encoder: {len(self.text_encoder_loras)} modules.")
self.unet_loras, unet_rep_modules = create_modules(
LoConNetworkCompvis.LORA_PREFIX_UNET,
unet,
LoConNetworkCompvis.UNET_TARGET_REPLACE_MODULE,
self.multiplier_unet
)
print(f"create LoCon for U-Net: {len(self.unet_loras)} modules.")
# make backup of original forward/weights, if multiple modules are applied, do in 1st module only
backed_up = False # messaging purpose only
for rep_module in te_rep_modules + unet_rep_modules:
if rep_module.__class__.__name__ == "MultiheadAttention": # multiple MHA modules are in list, prevent to backed up forward
if not hasattr(rep_module, "_lora_org_weights"):
# avoid updating of original weights. state_dict is reference to original weights
rep_module._lora_org_weights = copy.deepcopy(rep_module.state_dict())
backed_up = True
elif not hasattr(rep_module, "_lora_org_forward"):
rep_module._lora_org_forward = rep_module.forward
backed_up = True
if backed_up:
print("original forward/weights is backed up.")
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def restore(self, text_encoder, unet):
# restore forward/weights from property for all modules
restored = False # messaging purpose only
modules = []
modules.extend(text_encoder.modules())
modules.extend(unet.modules())
for module in modules:
if hasattr(module, "_lora_org_forward"):
module.forward = module._lora_org_forward
del module._lora_org_forward
restored = True
if hasattr(module, "_lora_org_weights"): # module doesn't have forward and weights at same time currently, but supports it for future changing
module.load_state_dict(module._lora_org_weights)
del module._lora_org_weights
restored = True
if restored:
print("original forward/weights is restored.")
def apply_lora_modules(self, du_state_dict):
# conversion 1st step: convert names in state_dict
state_dict = LoConNetworkCompvis.convert_state_dict_name_to_compvis(self.v2, du_state_dict)
# check state_dict has text_encoder or unet
weights_has_text_encoder = weights_has_unet = False
for key in state_dict.keys():
if key.startswith(LoConNetworkCompvis.LORA_PREFIX_TEXT_ENCODER):
weights_has_text_encoder = True
elif key.startswith(LoConNetworkCompvis.LORA_PREFIX_UNET):
weights_has_unet = True
if weights_has_text_encoder and weights_has_unet:
break
apply_text_encoder = weights_has_text_encoder
apply_unet = weights_has_unet
if apply_text_encoder:
print("enable LoCon for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoCon for U-Net")
else:
self.unet_loras = []
# add modules to network: this makes state_dict can be got from LoRANetwork
mha_loras = {}
for lora in self.text_encoder_loras + self.unet_loras:
if type(lora) == LoConModule:
lora.apply_to() # ensure remove reference to original Linear: reference makes key of state_dict
self.add_module(lora.lora_name, lora)
else:
# SD2.x MultiheadAttention merge weights to MHA weights
lora_info: LoRAInfo = lora
if lora_info.module_name not in mha_loras:
mha_loras[lora_info.module_name] = {}
lora_dic = mha_loras[lora_info.module_name]
lora_dic[lora_info.lora_name] = lora_info
if len(lora_dic) == 4:
# calculate and apply
w_q_dw = state_dict.get(lora_info.module_name + '_q_proj.lora_down.weight')
if w_q_dw is not None: # corresponding LoRa module exists
w_q_up = state_dict[lora_info.module_name + '_q_proj.lora_up.weight']
w_q_ap = state_dict.get(lora_info.module_name + '_q_proj.alpha', None)
w_k_dw = state_dict[lora_info.module_name + '_k_proj.lora_down.weight']
w_k_up = state_dict[lora_info.module_name + '_k_proj.lora_up.weight']
w_k_ap = state_dict.get(lora_info.module_name + '_k_proj.alpha', None)
w_v_dw = state_dict[lora_info.module_name + '_v_proj.lora_down.weight']
w_v_up = state_dict[lora_info.module_name + '_v_proj.lora_up.weight']
w_v_ap = state_dict.get(lora_info.module_name + '_v_proj.alpha', None)
w_out_dw = state_dict[lora_info.module_name + '_out_proj.lora_down.weight']
w_out_up = state_dict[lora_info.module_name + '_out_proj.lora_up.weight']
w_out_ap = state_dict.get(lora_info.module_name + '_out_proj.alpha', None)
sd = lora_info.module.state_dict()
qkv_weight = sd['in_proj_weight']
out_weight = sd['out_proj.weight']
dev = qkv_weight.device
def merge_weights(weight, up_weight, down_weight, alpha=None):
# calculate in float
if alpha is None:
alpha = down_weight.shape[0]
alpha = float(alpha)
scale = alpha / down_weight.shape[0]
dtype = weight.dtype
weight = weight.float() + lora_info.multiplier * (up_weight.to(dev, dtype=torch.float) @ down_weight.to(dev, dtype=torch.float)) * scale
weight = weight.to(dtype)
return weight
q_weight, k_weight, v_weight = torch.chunk(qkv_weight, 3)
if q_weight.size()[1] == w_q_up.size()[0]:
q_weight = merge_weights(q_weight, w_q_up, w_q_dw, w_q_ap)
k_weight = merge_weights(k_weight, w_k_up, w_k_dw, w_k_ap)
v_weight = merge_weights(v_weight, w_v_up, w_v_dw, w_v_ap)
qkv_weight = torch.cat([q_weight, k_weight, v_weight])
out_weight = merge_weights(out_weight, w_out_up, w_out_dw, w_out_ap)
sd['in_proj_weight'] = qkv_weight.to(dev)
sd['out_proj.weight'] = out_weight.to(dev)
lora_info.module.load_state_dict(sd)
else:
# different dim, version mismatch
print(f"shape of weight is different: {lora_info.module_name}. SD version may be different")
for t in ["q", "k", "v", "out"]:
del state_dict[f"{lora_info.module_name}_{t}_proj.lora_down.weight"]
del state_dict[f"{lora_info.module_name}_{t}_proj.lora_up.weight"]
alpha_key = f"{lora_info.module_name}_{t}_proj.alpha"
if alpha_key in state_dict:
del state_dict[alpha_key]
else:
# corresponding weight not exists: version mismatch
pass
# conversion 2nd step: convert weight's shape (and handle wrapped)
state_dict = self.convert_state_dict_shape_to_compvis(state_dict)
return state_dict
def convert_state_dict_shape_to_compvis(self, state_dict):
# shape conversion
current_sd = self.state_dict() # to get target shape
wrapped = False
count = 0
for key in list(state_dict.keys()):
if key not in current_sd:
continue # might be error or another version
if "wrapped" in key:
wrapped = True
value: torch.Tensor = state_dict[key]
if value.size() != current_sd[key].size():
# print(key, value.size(), current_sd[key].size())
# print(f"convert weights shape: {key}, from: {value.size()}, {len(value.size())}")
count += 1
if '.alpha' in key:
assert value.size().numel() == 1
value = torch.tensor(value.item())
elif len(value.size()) == 4:
value = value.squeeze(3).squeeze(2)
else:
value = value.unsqueeze(2).unsqueeze(3)
state_dict[key] = value
if tuple(value.size()) != tuple(current_sd[key].size()):
print(
f"weight's shape is different: {key} expected {current_sd[key].size()} found {value.size()}. SD version may be different")
del state_dict[key]
print(f"shapes for {count} weights are converted.")
# convert wrapped
if not wrapped:
print("remove 'wrapped' from keys")
for key in list(state_dict.keys()):
if "_wrapped_" in key:
new_key = key.replace("_wrapped_", "_")
state_dict[new_key] = state_dict[key]
del state_dict[key]
return state_dict |