File size: 22,851 Bytes
34097e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
'''
Hijack version of kohya-ss/additional_networks/scripts/lora_compvis.py
'''
# LoRA network module
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py

import copy
import math
import re
from typing import NamedTuple
import torch
from locon import LoConModule


class LoRAInfo(NamedTuple):
    lora_name: str
    module_name: str
    module: torch.nn.Module
    multiplier: float
    dim: int
    alpha: float


def create_network_and_apply_compvis(du_state_dict, multiplier_tenc, multiplier_unet, text_encoder, unet, **kwargs):
    # get device and dtype from unet
    for module in unet.modules():
        if module.__class__.__name__ == "Linear":
            param: torch.nn.Parameter = module.weight
            # device = param.device
            dtype = param.dtype
            break

    # get dims (rank) and alpha from state dict
    # currently it is assumed all LoRA have same alpha. alpha may be different in future.
    network_alpha = None
    conv_alpha = None
    network_dim = None
    conv_dim = None
    for key, value in du_state_dict.items():
        if network_alpha is None and 'alpha' in key:
            network_alpha = value
        if network_dim is None and 'lora_down' in key and len(value.size()) == 2:
            network_dim = value.size()[0]
        if network_alpha is not None and network_dim is not None:
            break
    if network_alpha is None:
        network_alpha = network_dim

    print(f"dimension: {network_dim},\n"
          f"alpha: {network_alpha},\n"
          f"multiplier_unet: {multiplier_unet},\n"
          f"multiplier_tenc: {multiplier_tenc}"
          )
    if network_dim is None:
        print(f"The selected model is not LoRA or not trained by `sd-scripts`?")
        network_dim = 4
        network_alpha = 1

    # create, apply and load weights
    network = LoConNetworkCompvis(
        text_encoder, unet, du_state_dict,
        multiplier_tenc = multiplier_tenc,
        multiplier_unet = multiplier_unet,
    )
    state_dict = network.apply_lora_modules(du_state_dict)              # some weights are applied to text encoder
    network.to(dtype)                                              # with this, if error comes from next line, the model will be used
    info = network.load_state_dict(state_dict, strict=False)

    # remove redundant warnings
    if len(info.missing_keys) > 4:
        missing_keys = []
        alpha_count = 0
        for key in info.missing_keys:
            if 'alpha' not in key:
                missing_keys.append(key)
            else:
                if alpha_count == 0:
                    missing_keys.append(key)
                alpha_count += 1
        if alpha_count > 1:
            missing_keys.append(
                    f"... and {alpha_count-1} alphas. The model doesn't have alpha, use dim (rannk) as alpha. You can ignore this message.")

        info = torch.nn.modules.module._IncompatibleKeys(missing_keys, info.unexpected_keys)

    return network, info


class LoConNetworkCompvis(torch.nn.Module):
    # UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"]
    # TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
    LOCON_TARGET = ["ResBlock", "Downsample", "Upsample"]
    UNET_TARGET_REPLACE_MODULE = ["SpatialTransformer"] + LOCON_TARGET  # , "Attention"]
    TEXT_ENCODER_TARGET_REPLACE_MODULE = ["ResidualAttentionBlock", "CLIPAttention", "CLIPMLP"]

    LORA_PREFIX_UNET = 'lora_unet'
    LORA_PREFIX_TEXT_ENCODER = 'lora_te'

    @classmethod
    def convert_diffusers_name_to_compvis(cls, v2, du_name):
        """
        convert diffusers's LoRA name to CompVis
        """
        cv_name = None
        if "lora_unet_" in du_name:
            m = re.search(r"_down_blocks_(\d+)_attentions_(\d+)_(.+)", du_name)
            if m:
                du_block_index = int(m.group(1))
                du_attn_index = int(m.group(2))
                du_suffix = m.group(3)

                cv_index = 1 + du_block_index * 3 + du_attn_index      # 1,2, 4,5, 7,8
                cv_name = f"lora_unet_input_blocks_{cv_index}_1_{du_suffix}"
                return cv_name
            
            m = re.search(r"_mid_block_attentions_(\d+)_(.+)", du_name)
            if m:
                du_suffix = m.group(2)
                cv_name = f"lora_unet_middle_block_1_{du_suffix}"
                return cv_name
            
            m = re.search(r"_up_blocks_(\d+)_attentions_(\d+)_(.+)", du_name)
            if m:
                du_block_index = int(m.group(1))
                du_attn_index = int(m.group(2))
                du_suffix = m.group(3)

                cv_index = du_block_index * 3 + du_attn_index      # 3,4,5, 6,7,8, 9,10,11
                cv_name = f"lora_unet_output_blocks_{cv_index}_1_{du_suffix}"
                return cv_name
            
            m = re.search(r"_down_blocks_(\d+)_resnets_(\d+)_(.+)", du_name)
            if m:
                du_block_index = int(m.group(1))
                du_res_index = int(m.group(2))
                du_suffix = m.group(3)
                cv_suffix = {
                    'conv1': 'in_layers_2',
                    'conv2': 'out_layers_3',
                    'time_emb_proj': 'emb_layers_1',
                    'conv_shortcut': 'skip_connection'
                }[du_suffix]

                cv_index = 1 + du_block_index * 3 + du_res_index      # 1,2, 4,5, 7,8
                cv_name = f"lora_unet_input_blocks_{cv_index}_0_{cv_suffix}"
                return cv_name
            
            m = re.search(r"_down_blocks_(\d+)_downsamplers_0_conv", du_name)
            if m:
                block_index = int(m.group(1))
                cv_index = 3 + block_index * 3
                cv_name = f"lora_unet_input_blocks_{cv_index}_0_op"
                return cv_name
            
            m = re.search(r"_mid_block_resnets_(\d+)_(.+)", du_name)
            if m:
                index = int(m.group(1))
                du_suffix = m.group(2)
                cv_suffix = {
                    'conv1': 'in_layers_2',
                    'conv2': 'out_layers_3',
                    'time_emb_proj': 'emb_layers_1',
                    'conv_shortcut': 'skip_connection'
                }[du_suffix]
                cv_name = f"lora_unet_middle_block_{index*2}_{cv_suffix}"
                return cv_name
            
            m = re.search(r"_up_blocks_(\d+)_resnets_(\d+)_(.+)", du_name)
            if m:
                du_block_index = int(m.group(1))
                du_res_index = int(m.group(2))
                du_suffix = m.group(3)
                cv_suffix = {
                    'conv1': 'in_layers_2',
                    'conv2': 'out_layers_3',
                    'time_emb_proj': 'emb_layers_1',
                    'conv_shortcut': 'skip_connection'
                }[du_suffix]

                cv_index = du_block_index * 3 + du_res_index      # 1,2, 4,5, 7,8
                cv_name = f"lora_unet_output_blocks_{cv_index}_0_{cv_suffix}"
                return cv_name
            
            m = re.search(r"_up_blocks_(\d+)_upsamplers_0_conv", du_name)
            if m:
                block_index = int(m.group(1))
                cv_index = block_index * 3 + 2
                cv_name = f"lora_unet_output_blocks_{cv_index}_{bool(block_index)+1}_conv"
                return cv_name
            
        elif "lora_te_" in du_name:
            m = re.search(r"_model_encoder_layers_(\d+)_(.+)", du_name)
            if m:
                du_block_index = int(m.group(1))
                du_suffix = m.group(2)

                cv_index = du_block_index
                if v2:
                    if 'mlp_fc1' in du_suffix:
                        cv_name = f"lora_te_wrapped_model_transformer_resblocks_{cv_index}_{du_suffix.replace('mlp_fc1', 'mlp_c_fc')}"
                    elif 'mlp_fc2' in du_suffix:
                        cv_name = f"lora_te_wrapped_model_transformer_resblocks_{cv_index}_{du_suffix.replace('mlp_fc2', 'mlp_c_proj')}"
                    elif 'self_attn':
                        # handled later
                        cv_name = f"lora_te_wrapped_model_transformer_resblocks_{cv_index}_{du_suffix.replace('self_attn', 'attn')}"
                else:
                    cv_name = f"lora_te_wrapped_transformer_text_model_encoder_layers_{cv_index}_{du_suffix}"

        assert cv_name is not None, f"conversion failed: {du_name}. the model may not be trained by `sd-scripts`."
        return cv_name

    @classmethod
    def convert_state_dict_name_to_compvis(cls, v2, state_dict):
        """
        convert keys in state dict to load it by load_state_dict
        """
        new_sd = {}
        for key, value in state_dict.items():
            tokens = key.split('.')
            compvis_name = LoConNetworkCompvis.convert_diffusers_name_to_compvis(v2, tokens[0])
            new_key = compvis_name + '.' + '.'.join(tokens[1:])
            new_sd[new_key] = value

        return new_sd

    def __init__(self, text_encoder, unet, du_state_dict, multiplier_tenc=1.0, multiplier_unet=1.0) -> None:
        super().__init__()
        self.multiplier_unet = multiplier_unet
        self.multiplier_tenc = multiplier_tenc

        # create module instances
        for name, module in text_encoder.named_modules():
            for child_name, child_module in module.named_modules():
                if child_module.__class__.__name__ == 'MultiheadAttention':
                    self.v2 = True
                    break
            else:
                continue
            break
        else:
            self.v2 = False
        comp_state_dict = {}

        def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules, multiplier):
            nonlocal comp_state_dict
            loras = []
            replaced_modules = []
            for name, module in root_module.named_modules():
                if module.__class__.__name__ in target_replace_modules:
                    for child_name, child_module in module.named_modules():
                        layer = child_module.__class__.__name__
                        lora_name = prefix + '.' + name + '.' + child_name
                        lora_name = lora_name.replace('.', '_')
                        if layer == "Linear" or layer == "Conv2d":
                            if '_resblocks_23_' in lora_name:  # ignore last block in StabilityAi Text Encoder
                                break
                            if f'{lora_name}.lora_down.weight' not in comp_state_dict:
                                if module.__class__.__name__ in LoConNetworkCompvis.LOCON_TARGET:
                                    continue
                                else:
                                    print(f'Cannot find: "{lora_name}", skipped')
                                    continue
                            rank = comp_state_dict[f'{lora_name}.lora_down.weight'].shape[0]
                            alpha = comp_state_dict.get(f'{lora_name}.alpha', torch.tensor(rank)).item()
                            lora = LoConModule(lora_name, child_module, multiplier, rank, alpha)
                            loras.append(lora)

                            replaced_modules.append(child_module)
                        elif child_module.__class__.__name__ == "MultiheadAttention":
                            # make four modules: not replacing forward method but merge weights
                            self.v2 = True
                            for suffix in ['q', 'k', 'v', 'out']:
                                module_name = prefix + '.' + name + '.' + child_name          # ~.attn
                                module_name = module_name.replace('.', '_')
                                if '_resblocks_23_' in module_name:                           # ignore last block in StabilityAi Text Encoder
                                    break
                                lora_name = module_name + '_' + suffix
                                lora_info = LoRAInfo(lora_name, module_name, child_module, multiplier, 0, 0)
                                loras.append(lora_info)

                                replaced_modules.append(child_module)
            return loras, replaced_modules
        
        for k,v in LoConNetworkCompvis.convert_state_dict_name_to_compvis(self.v2, du_state_dict).items():
            comp_state_dict[k] = v

        self.text_encoder_loras, te_rep_modules = create_modules(
            LoConNetworkCompvis.LORA_PREFIX_TEXT_ENCODER,
            text_encoder, 
            LoConNetworkCompvis.TEXT_ENCODER_TARGET_REPLACE_MODULE, 
            self.multiplier_tenc
        )
        print(f"create LoCon for Text Encoder: {len(self.text_encoder_loras)} modules.")
        
        self.unet_loras, unet_rep_modules = create_modules(
            LoConNetworkCompvis.LORA_PREFIX_UNET, 
            unet, 
            LoConNetworkCompvis.UNET_TARGET_REPLACE_MODULE, 
            self.multiplier_unet
        )
        print(f"create LoCon for U-Net: {len(self.unet_loras)} modules.")

        # make backup of original forward/weights, if multiple modules are applied, do in 1st module only
        backed_up = False                     # messaging purpose only
        for rep_module in te_rep_modules + unet_rep_modules:
            if rep_module.__class__.__name__ == "MultiheadAttention":      # multiple MHA modules are in list, prevent to backed up forward
                if not hasattr(rep_module, "_lora_org_weights"):
                    # avoid updating of original weights. state_dict is reference to original weights
                    rep_module._lora_org_weights = copy.deepcopy(rep_module.state_dict())
                    backed_up = True
            elif not hasattr(rep_module, "_lora_org_forward"):
                rep_module._lora_org_forward = rep_module.forward
                backed_up = True
        if backed_up:
            print("original forward/weights is backed up.")

        # assertion
        names = set()
        for lora in self.text_encoder_loras + self.unet_loras:
            assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
            names.add(lora.lora_name)

    def restore(self, text_encoder, unet):
        # restore forward/weights from property for all modules
        restored = False                        # messaging purpose only
        modules = []
        modules.extend(text_encoder.modules())
        modules.extend(unet.modules())
        for module in modules:
            if hasattr(module, "_lora_org_forward"):
                module.forward = module._lora_org_forward
                del module._lora_org_forward
                restored = True
            if hasattr(module, "_lora_org_weights"):        # module doesn't have forward and weights at same time currently, but supports it for future changing
                module.load_state_dict(module._lora_org_weights)
                del module._lora_org_weights
                restored = True

        if restored:
            print("original forward/weights is restored.")

    def apply_lora_modules(self, du_state_dict):
        # conversion 1st step: convert names in state_dict
        state_dict = LoConNetworkCompvis.convert_state_dict_name_to_compvis(self.v2, du_state_dict)

        # check state_dict has text_encoder or unet
        weights_has_text_encoder = weights_has_unet = False
        for key in state_dict.keys():
            if key.startswith(LoConNetworkCompvis.LORA_PREFIX_TEXT_ENCODER):
                weights_has_text_encoder = True
            elif key.startswith(LoConNetworkCompvis.LORA_PREFIX_UNET):
                weights_has_unet = True
            if weights_has_text_encoder and weights_has_unet:
                break

        apply_text_encoder = weights_has_text_encoder
        apply_unet = weights_has_unet

        if apply_text_encoder:
            print("enable LoCon for text encoder")
        else:
            self.text_encoder_loras = []

        if apply_unet:
            print("enable LoCon for U-Net")
        else:
            self.unet_loras = []

        # add modules to network: this makes state_dict can be got from LoRANetwork
        mha_loras = {}
        for lora in self.text_encoder_loras + self.unet_loras:
            if type(lora) == LoConModule:
                lora.apply_to()                           # ensure remove reference to original Linear: reference makes key of state_dict
                self.add_module(lora.lora_name, lora)
            else:
                # SD2.x MultiheadAttention merge weights to MHA weights
                lora_info: LoRAInfo = lora
                if lora_info.module_name not in mha_loras:
                    mha_loras[lora_info.module_name] = {}

                lora_dic = mha_loras[lora_info.module_name]
                lora_dic[lora_info.lora_name] = lora_info
                if len(lora_dic) == 4:
                    # calculate and apply
                    w_q_dw = state_dict.get(lora_info.module_name + '_q_proj.lora_down.weight')
                    if w_q_dw is not None:                       # corresponding LoRa module exists
                        w_q_up = state_dict[lora_info.module_name + '_q_proj.lora_up.weight']
                        w_q_ap = state_dict.get(lora_info.module_name + '_q_proj.alpha', None)
                        w_k_dw = state_dict[lora_info.module_name + '_k_proj.lora_down.weight']
                        w_k_up = state_dict[lora_info.module_name + '_k_proj.lora_up.weight']
                        w_k_ap = state_dict.get(lora_info.module_name + '_k_proj.alpha', None)
                        w_v_dw = state_dict[lora_info.module_name + '_v_proj.lora_down.weight']
                        w_v_up = state_dict[lora_info.module_name + '_v_proj.lora_up.weight']
                        w_v_ap = state_dict.get(lora_info.module_name + '_v_proj.alpha', None)
                        w_out_dw = state_dict[lora_info.module_name + '_out_proj.lora_down.weight']
                        w_out_up = state_dict[lora_info.module_name + '_out_proj.lora_up.weight']
                        w_out_ap = state_dict.get(lora_info.module_name + '_out_proj.alpha', None)

                        sd = lora_info.module.state_dict()
                        qkv_weight = sd['in_proj_weight']
                        out_weight = sd['out_proj.weight']
                        dev = qkv_weight.device

                        def merge_weights(weight, up_weight, down_weight, alpha=None):
                            # calculate in float
                            if alpha is None:
                                alpha = down_weight.shape[0]
                            alpha = float(alpha)
                            scale = alpha / down_weight.shape[0]
                            dtype = weight.dtype
                            weight = weight.float() + lora_info.multiplier * (up_weight.to(dev, dtype=torch.float) @ down_weight.to(dev, dtype=torch.float)) * scale
                            weight = weight.to(dtype)
                            return weight

                        q_weight, k_weight, v_weight = torch.chunk(qkv_weight, 3)
                        if q_weight.size()[1] == w_q_up.size()[0]:
                            q_weight = merge_weights(q_weight, w_q_up, w_q_dw, w_q_ap)
                            k_weight = merge_weights(k_weight, w_k_up, w_k_dw, w_k_ap)
                            v_weight = merge_weights(v_weight, w_v_up, w_v_dw, w_v_ap)
                            qkv_weight = torch.cat([q_weight, k_weight, v_weight])

                            out_weight = merge_weights(out_weight, w_out_up, w_out_dw, w_out_ap)

                            sd['in_proj_weight'] = qkv_weight.to(dev)
                            sd['out_proj.weight'] = out_weight.to(dev)

                            lora_info.module.load_state_dict(sd)
                        else:
                            # different dim, version mismatch
                            print(f"shape of weight is different: {lora_info.module_name}. SD version may be different")

                        for t in ["q", "k", "v", "out"]:
                            del state_dict[f"{lora_info.module_name}_{t}_proj.lora_down.weight"]
                            del state_dict[f"{lora_info.module_name}_{t}_proj.lora_up.weight"]
                            alpha_key = f"{lora_info.module_name}_{t}_proj.alpha"
                            if alpha_key in state_dict:
                                del state_dict[alpha_key]
                    else:
                        # corresponding weight not exists: version mismatch
                        pass

        # conversion 2nd step: convert weight's shape (and handle wrapped)
        state_dict = self.convert_state_dict_shape_to_compvis(state_dict)

        return state_dict

    def convert_state_dict_shape_to_compvis(self, state_dict):
        # shape conversion
        current_sd = self.state_dict()        # to get target shape
        wrapped = False
        count = 0
        for key in list(state_dict.keys()):
            if key not in current_sd:
                continue                          # might be error or another version
            if "wrapped" in key:
                wrapped = True

            value: torch.Tensor = state_dict[key]
            if value.size() != current_sd[key].size():
                # print(key, value.size(), current_sd[key].size())
                # print(f"convert weights shape: {key}, from: {value.size()}, {len(value.size())}")
                count += 1
                if '.alpha' in key:
                    assert value.size().numel() == 1
                    value = torch.tensor(value.item())
                elif len(value.size()) == 4:
                    value = value.squeeze(3).squeeze(2)
                else:
                    value = value.unsqueeze(2).unsqueeze(3)
                state_dict[key] = value
            if tuple(value.size()) != tuple(current_sd[key].size()):
                print(
                        f"weight's shape is different: {key} expected {current_sd[key].size()} found {value.size()}. SD version may be different")
                del state_dict[key]
        print(f"shapes for {count} weights are converted.")

        # convert wrapped
        if not wrapped:
            print("remove 'wrapped' from keys")
            for key in list(state_dict.keys()):
                if "_wrapped_" in key:
                    new_key = key.replace("_wrapped_", "_")
                    state_dict[new_key] = state_dict[key]
                    del state_dict[key]

        return state_dict