File size: 6,929 Bytes
34097e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import os.path
from modules import shared
import modules.scripts as scripts
from scripts import model_util, util
from scripts.model_util import MAX_MODEL_COUNT


LORA_TRAIN_METADATA_NAMES = {
    "ss_session_id": "Session ID",
    "ss_training_started_at": "Training started at",
    "ss_output_name": "Output name",
    "ss_learning_rate": "Learning rate",
    "ss_text_encoder_lr": "Text encoder LR",
    "ss_unet_lr": "UNet LR",
    "ss_num_train_images": "# of training images",
    "ss_num_reg_images": "# of reg images",
    "ss_num_batches_per_epoch": "Batches per epoch",
    "ss_num_epochs": "Total epochs",
    "ss_epoch": "Epoch",
    "ss_batch_size_per_device": "Batch size/device",
    "ss_total_batch_size": "Total batch size",
    "ss_gradient_checkpointing": "Gradient checkpointing",
    "ss_gradient_accumulation_steps": "Gradient accum. steps",
    "ss_max_train_steps": "Max train steps",
    "ss_lr_warmup_steps": "LR warmup steps",
    "ss_lr_scheduler": "LR scheduler",
    "ss_network_module": "Network module",
    "ss_network_dim": "Network dim",
    "ss_network_alpha": "Network alpha",
    "ss_mixed_precision": "Mixed precision",
    "ss_full_fp16": "Full FP16",
    "ss_v2": "V2",
    "ss_resolution": "Resolution",
    "ss_clip_skip": "Clip skip",
    "ss_max_token_length": "Max token length",
    "ss_color_aug": "Color aug",
    "ss_flip_aug": "Flip aug",
    "ss_random_crop": "Random crop",
    "ss_shuffle_caption": "Shuffle caption",
    "ss_cache_latents": "Cache latents",
    "ss_enable_bucket": "Enable bucket",
    "ss_min_bucket_reso": "Min bucket reso.",
    "ss_max_bucket_reso": "Max bucket reso.",
    "ss_seed": "Seed",
    "ss_keep_tokens": "Keep tokens",
    "ss_dataset_dirs": "Dataset dirs.",
    "ss_reg_dataset_dirs": "Reg dataset dirs.",
    "ss_sd_model_name": "SD model name",
    "ss_vae_name": "VAE name",
    "ss_training_comment": "Comment",
}


xy_grid = None  # XY Grid module
script_class = None  # additional_networks scripts.Script class
axis_params = [{}] * MAX_MODEL_COUNT


def update_axis_params(i, module, model):
    axis_params[i] = {"module": module, "model": model}


def get_axis_model_choices(i):
    module = axis_params[i].get("module", "None")
    model = axis_params[i].get("model", "None")

    if module == "LoRA":
        if model != "None":
            sort_by = shared.opts.data.get("additional_networks_sort_models_by", "name")
            return ["None"] + model_util.get_model_list(module, model, "", sort_by)

    return [f"select `Model {i+1}` in `Additional Networks`. models in same folder for selected one will be shown here."]


def update_script_args(p, value, arg_idx):
    global script_class
    for s in scripts.scripts_txt2img.alwayson_scripts:
        if isinstance(s, script_class):
            args = list(p.script_args)
            # print(f"Changed arg {arg_idx} from {args[s.args_from + arg_idx - 1]} to {value}")
            args[s.args_from + arg_idx] = value
            p.script_args = tuple(args)
            break


def confirm_models(p, xs):
    for x in xs:
        if x in ["", "None"]:
            continue
        if not model_util.find_closest_lora_model_name(x):
            raise RuntimeError(f"Unknown LoRA model: {x}")


def apply_module(p, x, xs, i):
    update_script_args(p, True, 0)  # set Enabled to True
    update_script_args(p, x, 2 + 4 * i)  # enabled, separate_weights, ({module}, model, weight_unet, weight_tenc), ...


def apply_model(p, x, xs, i):
    name = model_util.find_closest_lora_model_name(x)
    update_script_args(p, True, 0)
    update_script_args(p, name, 3 + 4 * i)  # enabled, separate_weights, (module, {model}, weight_unet, weight_tenc), ...


def apply_weight(p, x, xs, i):
    update_script_args(p, True, 0)
    update_script_args(p, x, 4 + 4 * i)  # enabled, separate_weights, (module, model, {weight_unet, weight_tenc}), ...
    update_script_args(p, x, 5 + 4 * i)


def apply_weight_unet(p, x, xs, i):
    update_script_args(p, True, 0)
    update_script_args(p, x, 4 + 4 * i)  # enabled, separate_weights, (module, model, {weight_unet}, weight_tenc), ...


def apply_weight_tenc(p, x, xs, i):
    update_script_args(p, True, 0)
    update_script_args(p, x, 5 + 4 * i)  # enabled, separate_weights, (module, model, weight_unet, {weight_tenc}), ...


def format_lora_model(p, opt, x):
    global xy_grid
    model = model_util.find_closest_lora_model_name(x)
    if model is None or model.lower() in ["", "none"]:
        return "None"

    value = xy_grid.format_value(p, opt, model)

    model_path = model_util.lora_models.get(model)
    metadata = model_util.read_model_metadata(model_path, "LoRA")
    if not metadata:
        return value

    metadata_names = util.split_path_list(shared.opts.data.get("additional_networks_xy_grid_model_metadata", ""))
    if not metadata_names:
        return value

    for name in metadata_names:
        name = name.strip()
        if name in metadata:
            formatted_name = LORA_TRAIN_METADATA_NAMES.get(name, name)
            value += f"\n{formatted_name}: {metadata[name]}, "

    return value.strip(" ").strip(",")


def initialize(script):
    global xy_grid, script_class
    xy_grid = None
    script_class = script
    for scriptDataTuple in scripts.scripts_data:
        if os.path.basename(scriptDataTuple.path) == "xy_grid.py" or os.path.basename(scriptDataTuple.path) == "xyz_grid.py":
            xy_grid = scriptDataTuple.module
            for i in range(MAX_MODEL_COUNT):
                model = xy_grid.AxisOption(
                    f"AddNet Model {i+1}",
                    str,
                    lambda p, x, xs, i=i: apply_model(p, x, xs, i),
                    format_lora_model,
                    confirm_models,
                    cost=0.5,
                    choices=lambda i=i: get_axis_model_choices(i),
                )
                weight = xy_grid.AxisOption(
                    f"AddNet Weight {i+1}",
                    float,
                    lambda p, x, xs, i=i: apply_weight(p, x, xs, i),
                    xy_grid.format_value_add_label,
                    None,
                    cost=0.5,
                )
                weight_unet = xy_grid.AxisOption(
                    f"AddNet UNet Weight {i+1}",
                    float,
                    lambda p, x, xs, i=i: apply_weight_unet(p, x, xs, i),
                    xy_grid.format_value_add_label,
                    None,
                    cost=0.5,
                )
                weight_tenc = xy_grid.AxisOption(
                    f"AddNet TEnc Weight {i+1}",
                    float,
                    lambda p, x, xs, i=i: apply_weight_tenc(p, x, xs, i),
                    xy_grid.format_value_add_label,
                    None,
                    cost=0.5,
                )
                xy_grid.axis_options.extend([model, weight, weight_unet, weight_tenc])