File size: 17,559 Bytes
34097e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import os
import torch
import numpy as np
import modules.scripts as scripts
from modules import shared, script_callbacks
import gradio as gr
import modules.ui
from modules.ui_components import ToolButton, FormRow
from scripts import addnet_xyz_grid_support, lora_compvis, model_util, metadata_editor
from scripts.model_util import lora_models, MAX_MODEL_COUNT
memo_symbol = "\U0001F4DD" # 📝
addnet_paste_params = {"txt2img": [], "img2img": []}
class Script(scripts.Script):
def __init__(self) -> None:
super().__init__()
self.latest_params = [(None, None, None, None)] * MAX_MODEL_COUNT
self.latest_networks = []
self.latest_model_hash = ""
def title(self):
return "Additional networks for generating"
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
global addnet_paste_params
# NOTE: Changing the contents of `ctrls` means the XY Grid support may need
# to be updated, see xyz_grid_support.py
ctrls = []
weight_sliders = []
model_dropdowns = []
tabname = "txt2img"
if is_img2img:
tabname = "img2img"
paste_params = addnet_paste_params[tabname]
paste_params.clear()
self.infotext_fields = []
self.paste_field_names = []
with gr.Group():
with gr.Accordion("Additional Networks", open=False):
with gr.Row():
enabled = gr.Checkbox(label="Enable", value=False)
ctrls.append(enabled)
self.infotext_fields.append((enabled, "AddNet Enabled"))
separate_weights = gr.Checkbox(label="Separate UNet/Text Encoder weights", value=False)
ctrls.append(separate_weights)
self.infotext_fields.append((separate_weights, "AddNet Separate Weights"))
for i in range(MAX_MODEL_COUNT):
with FormRow(variant="compact"):
module = gr.Dropdown(["LoRA"], label=f"Network module {i+1}", value="LoRA")
model = gr.Dropdown(list(lora_models.keys()), label=f"Model {i+1}", value="None")
with gr.Row(visible=False):
model_path = gr.Textbox(value="None", interactive=False, visible=False)
model.change(
lambda module, model, i=i: model_util.lora_models.get(model, "None"),
inputs=[module, model],
outputs=[model_path],
)
# Sending from the script UI to the metadata editor has to bypass
# gradio since this button will exit the gr.Blocks context by the
# time the metadata editor tab is created, so event handlers can't
# be registered on it by then.
model_info = ToolButton(value=memo_symbol, elem_id=f"additional_networks_send_to_metadata_editor_{i}")
model_info.click(fn=None, _js="addnet_send_to_metadata_editor", inputs=[module, model_path], outputs=[])
module.change(
lambda module, model, i=i: addnet_xyz_grid_support.update_axis_params(i, module, model),
inputs=[module, model],
outputs=[],
)
model.change(
lambda module, model, i=i: addnet_xyz_grid_support.update_axis_params(i, module, model),
inputs=[module, model],
outputs=[],
)
# perhaps there is no user to train Text Encoder only, Weight A is U-Net
# The name of label will be changed in future (Weight A and B), but UNet and TEnc for now for easy understanding
with gr.Column() as col:
weight = gr.Slider(label=f"Weight {i+1}", value=1.0, minimum=-1.0, maximum=2.0, step=0.05, visible=True)
weight_unet = gr.Slider(
label=f"UNet Weight {i+1}", value=1.0, minimum=-1.0, maximum=2.0, step=0.05, visible=False
)
weight_tenc = gr.Slider(
label=f"TEnc Weight {i+1}", value=1.0, minimum=-1.0, maximum=2.0, step=0.05, visible=False
)
weight.change(lambda w: (w, w), inputs=[weight], outputs=[weight_unet, weight_tenc])
weight.release(lambda w: (w, w), inputs=[weight], outputs=[weight_unet, weight_tenc])
paste_params.append({"module": module, "model": model})
ctrls.extend((module, model, weight_unet, weight_tenc))
weight_sliders.extend((weight, weight_unet, weight_tenc))
model_dropdowns.append(model)
self.infotext_fields.extend(
[
(module, f"AddNet Module {i+1}"),
(model, f"AddNet Model {i+1}"),
(weight, f"AddNet Weight {i+1}"),
(weight_unet, f"AddNet Weight A {i+1}"),
(weight_tenc, f"AddNet Weight B {i+1}"),
]
)
for _, field_name in self.infotext_fields:
self.paste_field_names.append(field_name)
def update_weight_sliders(separate, *sliders):
updates = []
for w, w_unet, w_tenc in zip(*(iter(sliders),) * 3):
if not separate:
w_unet = w
w_tenc = w
updates.append(gr.Slider.update(visible=not separate)) # Combined
updates.append(gr.Slider.update(visible=separate, value=w_unet)) # UNet
updates.append(gr.Slider.update(visible=separate, value=w_tenc)) # TEnc
return updates
separate_weights.change(update_weight_sliders, inputs=[separate_weights] + weight_sliders, outputs=weight_sliders)
def refresh_all_models(*dropdowns):
model_util.update_models()
updates = []
for dd in dropdowns:
if dd in lora_models:
selected = dd
else:
selected = "None"
update = gr.Dropdown.update(value=selected, choices=list(lora_models.keys()))
updates.append(update)
return updates
# mask for regions
with gr.Accordion("Extra args", open=False):
with gr.Row():
mask_image = gr.Image(label="mask image:")
ctrls.append(mask_image)
refresh_models = gr.Button(value="Refresh models")
refresh_models.click(refresh_all_models, inputs=model_dropdowns, outputs=model_dropdowns)
ctrls.append(refresh_models)
return ctrls
def set_infotext_fields(self, p, params):
for i, t in enumerate(params):
module, model, weight_unet, weight_tenc = t
if model is None or model == "None" or len(model) == 0 or (weight_unet == 0 and weight_tenc == 0):
continue
p.extra_generation_params.update(
{
"AddNet Enabled": True,
f"AddNet Module {i+1}": module,
f"AddNet Model {i+1}": model,
f"AddNet Weight A {i+1}": weight_unet,
f"AddNet Weight B {i+1}": weight_tenc,
}
)
def restore_networks(self, sd_model):
unet = sd_model.model.diffusion_model
text_encoder = sd_model.cond_stage_model
if len(self.latest_networks) > 0:
print("restoring last networks")
for network, _ in self.latest_networks[::-1]:
network.restore(text_encoder, unet)
self.latest_networks.clear()
def process_batch(self, p, *args, **kwargs):
unet = p.sd_model.model.diffusion_model
text_encoder = p.sd_model.cond_stage_model
if not args[0]:
self.restore_networks(p.sd_model)
return
params = []
for i, ctrl in enumerate(args[2:]):
if i % 4 == 0:
param = [ctrl]
else:
param.append(ctrl)
if i % 4 == 3:
params.append(param)
models_changed = len(self.latest_networks) == 0 # no latest network (cleared by check-off)
models_changed = models_changed or self.latest_model_hash != p.sd_model.sd_model_hash
if not models_changed:
for (l_module, l_model, l_weight_unet, l_weight_tenc), (module, model, weight_unet, weight_tenc) in zip(
self.latest_params, params
):
if l_module != module or l_model != model or l_weight_unet != weight_unet or l_weight_tenc != weight_tenc:
models_changed = True
break
if models_changed:
self.restore_networks(p.sd_model)
self.latest_params = params
self.latest_model_hash = p.sd_model.sd_model_hash
for module, model, weight_unet, weight_tenc in self.latest_params:
if model is None or model == "None" or len(model) == 0:
continue
if weight_unet == 0 and weight_tenc == 0:
print(f"ignore because weight is 0: {model}")
continue
model_path = lora_models.get(model, None)
if model_path is None:
raise RuntimeError(f"model not found: {model}")
if model_path.startswith('"') and model_path.endswith('"'): # trim '"' at start/end
model_path = model_path[1:-1]
if not os.path.exists(model_path):
print(f"file not found: {model_path}")
continue
print(f"{module} weight_unet: {weight_unet}, weight_tenc: {weight_tenc}, model: {model}")
if module == "LoRA":
if os.path.splitext(model_path)[1] == ".safetensors":
from safetensors.torch import load_file
du_state_dict = load_file(model_path)
else:
du_state_dict = torch.load(model_path, map_location="cpu")
network, info = lora_compvis.create_network_and_apply_compvis(
du_state_dict, weight_tenc, weight_unet, text_encoder, unet
)
# in medvram, device is different for u-net and sd_model, so use sd_model's
network.to(p.sd_model.device, dtype=p.sd_model.dtype)
print(f"LoRA model {model} loaded: {info}")
self.latest_networks.append((network, model))
if len(self.latest_networks) > 0:
print("setting (or sd model) changed. new networks created.")
# apply mask: currently only top 3 networks are supported
if len(self.latest_networks) > 0:
mask_image = args[-2]
if mask_image is not None:
mask_image = mask_image.astype(np.float32) / 255.0
print(f"use mask image to control LoRA regions.")
for i, (network, model) in enumerate(self.latest_networks[:3]):
if not hasattr(network, "set_mask"):
continue
mask = mask_image[:, :, i] # R,G,B
if mask.max() <= 0:
continue
mask = torch.tensor(mask, dtype=p.sd_model.dtype, device=p.sd_model.device)
network.set_mask(mask, height=p.height, width=p.width, hr_height=p.hr_upscale_to_y, hr_width=p.hr_upscale_to_x)
print(f"apply mask. channel: {i}, model: {model}")
else:
for network, _ in self.latest_networks:
if hasattr(network, "set_mask"):
network.set_mask(None)
self.set_infotext_fields(p, self.latest_params)
def on_script_unloaded():
if shared.sd_model:
for s in scripts.scripts_txt2img.alwayson_scripts:
if isinstance(s, Script):
s.restore_networks(shared.sd_model)
break
def on_ui_tabs():
global addnet_paste_params
with gr.Blocks(analytics_enabled=False) as additional_networks_interface:
metadata_editor.setup_ui(addnet_paste_params)
return [(additional_networks_interface, "Additional Networks", "additional_networks")]
def on_ui_settings():
section = ("additional_networks", "Additional Networks")
shared.opts.add_option(
"additional_networks_extra_lora_path",
shared.OptionInfo(
"",
"""Extra paths to scan for LoRA models, comma-separated. Paths containing commas must be enclosed in double quotes. In the path, " (one quote) must be replaced by "" (two quotes).""",
section=section,
),
)
shared.opts.add_option(
"additional_networks_sort_models_by",
shared.OptionInfo(
"name",
"Sort LoRA models by",
gr.Radio,
{"choices": ["name", "date", "path name", "rating", "has user metadata"]},
section=section,
),
)
shared.opts.add_option(
"additional_networks_reverse_sort_order", shared.OptionInfo(False, "Reverse model sort order", section=section)
)
shared.opts.add_option(
"additional_networks_model_name_filter", shared.OptionInfo("", "LoRA model name filter", section=section)
)
shared.opts.add_option(
"additional_networks_xy_grid_model_metadata",
shared.OptionInfo(
"",
'Metadata to show in XY-Grid label for Model axes, comma-separated (example: "ss_learning_rate, ss_num_epochs")',
section=section,
),
)
shared.opts.add_option(
"additional_networks_hash_thread_count",
shared.OptionInfo(1, "# of threads to use for hash calculation (increase if using an SSD)", section=section),
)
shared.opts.add_option(
"additional_networks_back_up_model_when_saving",
shared.OptionInfo(True, "Make a backup copy of the model being edited when saving its metadata.", section=section),
)
shared.opts.add_option(
"additional_networks_show_only_safetensors",
shared.OptionInfo(False, "Only show .safetensors format models", section=section),
)
shared.opts.add_option(
"additional_networks_show_only_models_with_metadata",
shared.OptionInfo(
"disabled",
"Only show models that have/don't have user-added metadata",
gr.Radio,
{"choices": ["disabled", "has metadata", "missing metadata"]},
section=section,
),
)
shared.opts.add_option(
"additional_networks_max_top_tags", shared.OptionInfo(20, "Max number of top tags to show", section=section)
)
shared.opts.add_option(
"additional_networks_max_dataset_folders", shared.OptionInfo(20, "Max number of dataset folders to show", section=section)
)
def on_infotext_pasted(infotext, params):
if "AddNet Enabled" not in params:
params["AddNet Enabled"] = "False"
# TODO changing "AddNet Separate Weights" does not seem to work
if "AddNet Separate Weights" not in params:
params["AddNet Separate Weights"] = "False"
for i in range(MAX_MODEL_COUNT):
# Convert combined weight into new format
if f"AddNet Weight {i+1}" in params:
params[f"AddNet Weight A {i+1}"] = params[f"AddNet Weight {i+1}"]
params[f"AddNet Weight B {i+1}"] = params[f"AddNet Weight {i+1}"]
if f"AddNet Module {i+1}" not in params:
params[f"AddNet Module {i+1}"] = "LoRA"
if f"AddNet Model {i+1}" not in params:
params[f"AddNet Model {i+1}"] = "None"
if f"AddNet Weight A {i+1}" not in params:
params[f"AddNet Weight A {i+1}"] = "0"
if f"AddNet Weight B {i+1}" not in params:
params[f"AddNet Weight B {i+1}"] = "0"
params[f"AddNet Weight {i+1}"] = params[f"AddNet Weight A {i+1}"]
if params[f"AddNet Weight A {i+1}"] != params[f"AddNet Weight B {i+1}"]:
params["AddNet Separate Weights"] = "True"
# Convert potential legacy name/hash to new format
params[f"AddNet Model {i+1}"] = str(model_util.find_closest_lora_model_name(params[f"AddNet Model {i+1}"]))
addnet_xyz_grid_support.update_axis_params(i, params[f"AddNet Module {i+1}"], params[f"AddNet Model {i+1}"])
addnet_xyz_grid_support.initialize(Script)
script_callbacks.on_script_unloaded(on_script_unloaded)
script_callbacks.on_ui_tabs(on_ui_tabs)
script_callbacks.on_ui_settings(on_ui_settings)
script_callbacks.on_infotext_pasted(on_infotext_pasted)
|