File size: 5,227 Bytes
306918c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import torch
import torch.nn as nn
import torch.nn.functional as F
class FlowHead(nn.Module):
def __init__(self, input_dim=128, hidden_dim=256):
super(FlowHead, self).__init__()
self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1)
self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
return self.conv2(self.relu(self.conv1(x)))
class ConvGRU(nn.Module):
def __init__(self, hidden_dim=128, input_dim=192+128):
super(ConvGRU, self).__init__()
self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
def forward(self, h, x):
hx = torch.cat([h, x], dim=1)
z = torch.sigmoid(self.convz(hx))
r = torch.sigmoid(self.convr(hx))
q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1)))
h = (1-z) * h + z * q
return h
class SepConvGRU(nn.Module):
def __init__(self, hidden_dim=128, input_dim=192+128):
super(SepConvGRU, self).__init__()
self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
def forward(self, h, x):
# horizontal
hx = torch.cat([h, x], dim=1)
z = torch.sigmoid(self.convz1(hx))
r = torch.sigmoid(self.convr1(hx))
q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1)))
h = (1-z) * h + z * q
# vertical
hx = torch.cat([h, x], dim=1)
z = torch.sigmoid(self.convz2(hx))
r = torch.sigmoid(self.convr2(hx))
q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1)))
h = (1-z) * h + z * q
return h
class SmallMotionEncoder(nn.Module):
def __init__(self, args):
super(SmallMotionEncoder, self).__init__()
cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2
self.convc1 = nn.Conv2d(cor_planes, 96, 1, padding=0)
self.convf1 = nn.Conv2d(2, 64, 7, padding=3)
self.convf2 = nn.Conv2d(64, 32, 3, padding=1)
self.conv = nn.Conv2d(128, 80, 3, padding=1)
def forward(self, flow, corr):
cor = F.relu(self.convc1(corr))
flo = F.relu(self.convf1(flow))
flo = F.relu(self.convf2(flo))
cor_flo = torch.cat([cor, flo], dim=1)
out = F.relu(self.conv(cor_flo))
return torch.cat([out, flow], dim=1)
class BasicMotionEncoder(nn.Module):
def __init__(self, args):
super(BasicMotionEncoder, self).__init__()
cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2
self.convc1 = nn.Conv2d(cor_planes, 256, 1, padding=0)
self.convc2 = nn.Conv2d(256, 192, 3, padding=1)
self.convf1 = nn.Conv2d(2, 128, 7, padding=3)
self.convf2 = nn.Conv2d(128, 64, 3, padding=1)
self.conv = nn.Conv2d(64+192, 128-2, 3, padding=1)
def forward(self, flow, corr):
cor = F.relu(self.convc1(corr))
cor = F.relu(self.convc2(cor))
flo = F.relu(self.convf1(flow))
flo = F.relu(self.convf2(flo))
cor_flo = torch.cat([cor, flo], dim=1)
out = F.relu(self.conv(cor_flo))
return torch.cat([out, flow], dim=1)
class SmallUpdateBlock(nn.Module):
def __init__(self, args, hidden_dim=96):
super(SmallUpdateBlock, self).__init__()
self.encoder = SmallMotionEncoder(args)
self.gru = ConvGRU(hidden_dim=hidden_dim, input_dim=82+64)
self.flow_head = FlowHead(hidden_dim, hidden_dim=128)
def forward(self, net, inp, corr, flow):
motion_features = self.encoder(flow, corr)
inp = torch.cat([inp, motion_features], dim=1)
net = self.gru(net, inp)
delta_flow = self.flow_head(net)
return net, None, delta_flow
class BasicUpdateBlock(nn.Module):
def __init__(self, args, hidden_dim=128, input_dim=128):
super(BasicUpdateBlock, self).__init__()
self.args = args
self.encoder = BasicMotionEncoder(args)
self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=128+hidden_dim)
self.flow_head = FlowHead(hidden_dim, hidden_dim=256)
self.mask = nn.Sequential(
nn.Conv2d(128, 256, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 64*9, 1, padding=0))
def forward(self, net, inp, corr, flow, upsample=True):
motion_features = self.encoder(flow, corr)
inp = torch.cat([inp, motion_features], dim=1)
net = self.gru(net, inp)
delta_flow = self.flow_head(net)
# scale mask to balence gradients
mask = .25 * self.mask(net)
return net, mask, delta_flow
|