File size: 4,164 Bytes
8c6b5ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""
Modified from https://github.com/KaiyangZhou/deep-person-reid
"""
import torch
from torch.optim.lr_scheduler import _LRScheduler

AVAI_SCHEDS = ["single_step", "multi_step", "cosine"]


class _BaseWarmupScheduler(_LRScheduler):

    def __init__(
        self,
        optimizer,
        successor,
        warmup_epoch,
        last_epoch=-1,
        verbose=False
    ):
        self.successor = successor
        self.warmup_epoch = warmup_epoch
        super().__init__(optimizer, last_epoch, verbose)

    def get_lr(self):
        raise NotImplementedError

    def step(self, epoch=None):
        if self.last_epoch >= self.warmup_epoch:
            self.successor.step(epoch)
            self._last_lr = self.successor.get_last_lr()
        else:
            super().step(epoch)


class ConstantWarmupScheduler(_BaseWarmupScheduler):

    def __init__(
        self,
        optimizer,
        successor,
        warmup_epoch,
        cons_lr,
        last_epoch=-1,
        verbose=False
    ):
        self.cons_lr = cons_lr
        super().__init__(
            optimizer, successor, warmup_epoch, last_epoch, verbose
        )

    def get_lr(self):
        if self.last_epoch >= self.warmup_epoch:
            return self.successor.get_last_lr()
        return [self.cons_lr for _ in self.base_lrs]


class LinearWarmupScheduler(_BaseWarmupScheduler):

    def __init__(
        self,
        optimizer,
        successor,
        warmup_epoch,
        min_lr,
        last_epoch=-1,
        verbose=False
    ):
        self.min_lr = min_lr
        super().__init__(
            optimizer, successor, warmup_epoch, last_epoch, verbose
        )

    def get_lr(self):
        if self.last_epoch >= self.warmup_epoch:
            return self.successor.get_last_lr()
        if self.last_epoch == 0:
            return [self.min_lr for _ in self.base_lrs]
        return [
            lr * self.last_epoch / self.warmup_epoch for lr in self.base_lrs
        ]


def build_lr_scheduler(optimizer, optim_cfg):
    """A function wrapper for building a learning rate scheduler.

    Args:
        optimizer (Optimizer): an Optimizer.
        optim_cfg (CfgNode): optimization config.
    """
    lr_scheduler = optim_cfg.LR_SCHEDULER
    stepsize = optim_cfg.STEPSIZE
    gamma = optim_cfg.GAMMA
    max_epoch = optim_cfg.MAX_EPOCH

    if lr_scheduler not in AVAI_SCHEDS:
        raise ValueError(
            f"scheduler must be one of {AVAI_SCHEDS}, but got {lr_scheduler}"
        )

    if lr_scheduler == "single_step":
        if isinstance(stepsize, (list, tuple)):
            stepsize = stepsize[-1]

        if not isinstance(stepsize, int):
            raise TypeError(
                "For single_step lr_scheduler, stepsize must "
                f"be an integer, but got {type(stepsize)}"
            )

        if stepsize <= 0:
            stepsize = max_epoch

        scheduler = torch.optim.lr_scheduler.StepLR(
            optimizer, step_size=stepsize, gamma=gamma
        )

    elif lr_scheduler == "multi_step":
        if not isinstance(stepsize, (list, tuple)):
            raise TypeError(
                "For multi_step lr_scheduler, stepsize must "
                f"be a list, but got {type(stepsize)}"
            )

        scheduler = torch.optim.lr_scheduler.MultiStepLR(
            optimizer, milestones=stepsize, gamma=gamma
        )

    elif lr_scheduler == "cosine":
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            optimizer, float(max_epoch)
        )

    if optim_cfg.WARMUP_EPOCH > 0:
        if not optim_cfg.WARMUP_RECOUNT:
            scheduler.last_epoch = optim_cfg.WARMUP_EPOCH

        if optim_cfg.WARMUP_TYPE == "constant":
            scheduler = ConstantWarmupScheduler(
                optimizer, scheduler, optim_cfg.WARMUP_EPOCH,
                optim_cfg.WARMUP_CONS_LR
            )

        elif optim_cfg.WARMUP_TYPE == "linear":
            scheduler = LinearWarmupScheduler(
                optimizer, scheduler, optim_cfg.WARMUP_EPOCH,
                optim_cfg.WARMUP_MIN_LR
            )

        else:
            raise ValueError

    return scheduler