File size: 3,934 Bytes
8c6b5ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
import torch.nn as nn

from .build import BACKBONE_REGISTRY
from .backbone import Backbone

try:
    from torch.hub import load_state_dict_from_url
except ImportError:
    from torch.utils.model_zoo import load_url as load_state_dict_from_url

model_urls = {
    "vgg11": "https://download.pytorch.org/models/vgg11-bbd30ac9.pth",
    "vgg13": "https://download.pytorch.org/models/vgg13-c768596a.pth",
    "vgg16": "https://download.pytorch.org/models/vgg16-397923af.pth",
    "vgg19": "https://download.pytorch.org/models/vgg19-dcbb9e9d.pth",
    "vgg11_bn": "https://download.pytorch.org/models/vgg11_bn-6002323d.pth",
    "vgg13_bn": "https://download.pytorch.org/models/vgg13_bn-abd245e5.pth",
    "vgg16_bn": "https://download.pytorch.org/models/vgg16_bn-6c64b313.pth",
    "vgg19_bn": "https://download.pytorch.org/models/vgg19_bn-c79401a0.pth",
}


class VGG(Backbone):

    def __init__(self, features, init_weights=True):
        super().__init__()
        self.features = features
        self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
        # Note that self.classifier outputs features rather than logits
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(),
        )

        self._out_features = 4096

        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        return self.classifier(x)

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(
                    m.weight, mode="fan_out", nonlinearity="relu"
                )
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)


def make_layers(cfg, batch_norm=False):
    layers = []
    in_channels = 3
    for v in cfg:
        if v == "M":
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    return nn.Sequential(*layers)


cfgs = {
    "A": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"],
    "B":
    [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"],
    "D": [
        64,
        64,
        "M",
        128,
        128,
        "M",
        256,
        256,
        256,
        "M",
        512,
        512,
        512,
        "M",
        512,
        512,
        512,
        "M",
    ],
    "E": [
        64,
        64,
        "M",
        128,
        128,
        "M",
        256,
        256,
        256,
        256,
        "M",
        512,
        512,
        512,
        512,
        "M",
        512,
        512,
        512,
        512,
        "M",
    ],
}


def _vgg(arch, cfg, batch_norm, pretrained):
    init_weights = False if pretrained else True
    model = VGG(
        make_layers(cfgs[cfg], batch_norm=batch_norm),
        init_weights=init_weights
    )
    if pretrained:
        state_dict = load_state_dict_from_url(model_urls[arch], progress=True)
        model.load_state_dict(state_dict, strict=False)
    return model


@BACKBONE_REGISTRY.register()
def vgg16(pretrained=True, **kwargs):
    return _vgg("vgg16", "D", False, pretrained)