File size: 9,273 Bytes
8c6b5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import numpy as np
from functools import partial
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.optim.lr_scheduler import LambdaLR
from dassl.data import DataManager
from dassl.optim import build_optimizer
from dassl.utils import count_num_param
from dassl.engine import TRAINER_REGISTRY, TrainerXU
from dassl.metrics import compute_accuracy
from dassl.modeling.ops import ReverseGrad
from dassl.engine.trainer import SimpleNet
from dassl.data.transforms.transforms import build_transform
def custom_scheduler(iter, max_iter=None, alpha=10, beta=0.75, init_lr=0.001):
"""Custom LR Annealing
https://arxiv.org/pdf/1409.7495.pdf
"""
if max_iter is None:
return init_lr
return (1 + float(iter / max_iter) * alpha)**(-1.0 * beta)
class AAC(nn.Module):
def forward(self, sim_mat, prob_u, prob_us):
P = prob_u.matmul(prob_us.t())
loss = -(
sim_mat * torch.log(P + 1e-7) +
(1.-sim_mat) * torch.log(1. - P + 1e-7)
)
return loss.mean()
class Prototypes(nn.Module):
def __init__(self, fdim, num_classes, temp=0.05):
super().__init__()
self.prototypes = nn.Linear(fdim, num_classes, bias=False)
self.temp = temp
self.revgrad = ReverseGrad()
def forward(self, x, reverse=False):
if reverse:
x = self.revgrad(x)
x = F.normalize(x, p=2, dim=1)
out = self.prototypes(x)
out = out / self.temp
return out
@TRAINER_REGISTRY.register()
class CDAC(TrainerXU):
"""Cross Domain Adaptive Clustering.
https://arxiv.org/pdf/2104.09415.pdf
"""
def __init__(self, cfg):
self.rampup_coef = cfg.TRAINER.CDAC.RAMPUP_COEF
self.rampup_iters = cfg.TRAINER.CDAC.RAMPUP_ITRS
self.lr_multi = cfg.TRAINER.CDAC.CLASS_LR_MULTI
self.topk = cfg.TRAINER.CDAC.TOPK_MATCH
self.p_thresh = cfg.TRAINER.CDAC.P_THRESH
self.aac_criterion = AAC()
super().__init__(cfg)
def check_cfg(self, cfg):
assert len(
cfg.TRAINER.CDAC.STRONG_TRANSFORMS
) > 0, "Strong augmentations are necessary to run CDAC"
assert cfg.DATALOADER.K_TRANSFORMS == 2, "CDAC needs two strong augmentations of the same image."
def build_data_loader(self):
cfg = self.cfg
tfm_train = build_transform(cfg, is_train=True)
custom_tfm_train = [tfm_train]
choices = cfg.TRAINER.CDAC.STRONG_TRANSFORMS
tfm_train_strong = build_transform(cfg, is_train=True, choices=choices)
custom_tfm_train += [tfm_train_strong]
self.dm = DataManager(self.cfg, custom_tfm_train=custom_tfm_train)
self.train_loader_x = self.dm.train_loader_x
self.train_loader_u = self.dm.train_loader_u
self.val_loader = self.dm.val_loader
self.test_loader = self.dm.test_loader
self.num_classes = self.dm.num_classes
self.lab2cname = self.dm.lab2cname
def build_model(self):
cfg = self.cfg
# Custom LR Scheduler for CDAC
if self.cfg.TRAIN.COUNT_ITER == "train_x":
self.num_batches = len(self.train_loader_x)
elif self.cfg.TRAIN.COUNT_ITER == "train_u":
self.num_batches = len(self.len_train_loader_u)
elif self.cfg.TRAIN.COUNT_ITER == "smaller_one":
self.num_batches = min(
len(self.train_loader_x), len(self.train_loader_u)
)
self.max_iter = self.max_epoch * self.num_batches
print("Max Iterations: %d" % self.max_iter)
print("Building F")
self.F = SimpleNet(cfg, cfg.MODEL, 0)
self.F.to(self.device)
print("# params: {:,}".format(count_num_param(self.F)))
self.optim_F = build_optimizer(self.F, cfg.OPTIM)
custom_lr_F = partial(
custom_scheduler, max_iter=self.max_iter, init_lr=cfg.OPTIM.LR
)
self.sched_F = LambdaLR(self.optim_F, custom_lr_F)
self.register_model("F", self.F, self.optim_F, self.sched_F)
print("Building C")
self.C = Prototypes(self.F.fdim, self.num_classes)
self.C.to(self.device)
print("# params: {:,}".format(count_num_param(self.C)))
self.optim_C = build_optimizer(self.C, cfg.OPTIM)
# Multiply the learning rate of C by lr_multi
for group_param in self.optim_C.param_groups:
group_param['lr'] *= self.lr_multi
custom_lr_C = partial(
custom_scheduler,
max_iter=self.max_iter,
init_lr=cfg.OPTIM.LR * self.lr_multi
)
self.sched_C = LambdaLR(self.optim_C, custom_lr_C)
self.register_model("C", self.C, self.optim_C, self.sched_C)
def assess_y_pred_quality(self, y_pred, y_true, mask):
n_masked_correct = (y_pred.eq(y_true).float() * mask).sum()
acc_thre = n_masked_correct / (mask.sum() + 1e-5)
acc_raw = y_pred.eq(y_true).sum() / y_pred.numel() # raw accuracy
keep_rate = mask.sum() / mask.numel()
output = {
"acc_thre": acc_thre,
"acc_raw": acc_raw,
"keep_rate": keep_rate
}
return output
def forward_backward(self, batch_x, batch_u):
current_itr = self.epoch * self.num_batches + self.batch_idx
input_x, label_x, input_u, input_us, input_us2, label_u = self.parse_batch_train(
batch_x, batch_u
)
# Paper Reference Eq. 2 - Supervised Loss
feat_x = self.F(input_x)
logit_x = self.C(feat_x)
loss_x = F.cross_entropy(logit_x, label_x)
self.model_backward_and_update(loss_x)
feat_u = self.F(input_u)
feat_us = self.F(input_us)
feat_us2 = self.F(input_us2)
# Paper Reference Eq.3 - Adversarial Adaptive Loss
logit_u = self.C(feat_u, reverse=True)
logit_us = self.C(feat_us, reverse=True)
prob_u, prob_us = F.softmax(logit_u, dim=1), F.softmax(logit_us, dim=1)
# Get similarity matrix s_ij
sim_mat = self.get_similarity_matrix(feat_u, self.topk, self.device)
aac_loss = (-1. * self.aac_criterion(sim_mat, prob_u, prob_us))
# Paper Reference Eq. 4 - Pseudo label Loss
logit_u = self.C(feat_u)
logit_us = self.C(feat_us)
logit_us2 = self.C(feat_us2)
prob_u, prob_us, prob_us2 = F.softmax(
logit_u, dim=1
), F.softmax(
logit_us, dim=1
), F.softmax(
logit_us2, dim=1
)
prob_u = prob_u.detach()
max_probs, max_idx = torch.max(prob_u, dim=-1)
mask = max_probs.ge(self.p_thresh).float()
p_u_stats = self.assess_y_pred_quality(max_idx, label_u, mask)
pl_loss = (
F.cross_entropy(logit_us2, max_idx, reduction='none') * mask
).mean()
# Paper Reference Eq. 8 - Consistency Loss
cons_multi = self.sigmoid_rampup(
current_itr=current_itr, rampup_itr=self.rampup_iters
) * self.rampup_coef
cons_loss = cons_multi * F.mse_loss(prob_us, prob_us2)
loss_u = aac_loss + pl_loss + cons_loss
self.model_backward_and_update(loss_u)
loss_summary = {
"loss_x": loss_x.item(),
"acc_x": compute_accuracy(logit_x, label_x)[0].item(),
"loss_u": loss_u.item(),
"aac_loss": aac_loss.item(),
"pl_loss": pl_loss.item(),
"cons_loss": cons_loss.item(),
"p_u_pred_acc": p_u_stats["acc_raw"],
"p_u_pred_acc_thre": p_u_stats["acc_thre"],
"p_u_pred_keep": p_u_stats["keep_rate"]
}
# Update LR after every iteration as mentioned in the paper
self.update_lr()
return loss_summary
def parse_batch_train(self, batch_x, batch_u):
input_x = batch_x["img"][0]
label_x = batch_x["label"]
input_u = batch_u["img"][0]
input_us = batch_u["img2"][0]
input_us2 = batch_u["img2"][1]
label_u = batch_u["label"]
input_x = input_x.to(self.device)
label_x = label_x.to(self.device)
input_u = input_u.to(self.device)
input_us = input_us.to(self.device)
input_us2 = input_us2.to(self.device)
label_u = label_u.to(self.device)
return input_x, label_x, input_u, input_us, input_us2, label_u
def model_inference(self, input):
return self.C(self.F(input))
@staticmethod
def get_similarity_matrix(feat, topk, device):
feat_d = feat.detach()
feat_d = torch.sort(
torch.argsort(feat_d, dim=1, descending=True)[:, :topk], dim=1
)[0]
sim_mat = torch.zeros((feat_d.shape[0], feat_d.shape[0])).to(device)
for row in range(feat_d.shape[0]):
sim_mat[row, torch.all(feat_d == feat_d[row, :], dim=1)] = 1
return sim_mat
@staticmethod
def sigmoid_rampup(current_itr, rampup_itr):
"""Exponential Rampup
https://arxiv.org/abs/1610.02242
"""
if rampup_itr == 0:
return 1.0
else:
var = np.clip(current_itr, 0.0, rampup_itr)
phase = 1.0 - var/rampup_itr
return float(np.exp(-5.0 * phase * phase))
|