File size: 9,273 Bytes
8c6b5ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import numpy as np
from functools import partial
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.optim.lr_scheduler import LambdaLR

from dassl.data import DataManager
from dassl.optim import build_optimizer
from dassl.utils import count_num_param
from dassl.engine import TRAINER_REGISTRY, TrainerXU
from dassl.metrics import compute_accuracy
from dassl.modeling.ops import ReverseGrad
from dassl.engine.trainer import SimpleNet
from dassl.data.transforms.transforms import build_transform


def custom_scheduler(iter, max_iter=None, alpha=10, beta=0.75, init_lr=0.001):
    """Custom LR Annealing

    https://arxiv.org/pdf/1409.7495.pdf
    """
    if max_iter is None:
        return init_lr
    return (1 + float(iter / max_iter) * alpha)**(-1.0 * beta)


class AAC(nn.Module):

    def forward(self, sim_mat, prob_u, prob_us):

        P = prob_u.matmul(prob_us.t())

        loss = -(
            sim_mat * torch.log(P + 1e-7) +
            (1.-sim_mat) * torch.log(1. - P + 1e-7)
        )
        return loss.mean()


class Prototypes(nn.Module):

    def __init__(self, fdim, num_classes, temp=0.05):
        super().__init__()
        self.prototypes = nn.Linear(fdim, num_classes, bias=False)
        self.temp = temp
        self.revgrad = ReverseGrad()

    def forward(self, x, reverse=False):
        if reverse:
            x = self.revgrad(x)
        x = F.normalize(x, p=2, dim=1)
        out = self.prototypes(x)
        out = out / self.temp
        return out


@TRAINER_REGISTRY.register()
class CDAC(TrainerXU):
    """Cross Domain Adaptive Clustering.

    https://arxiv.org/pdf/2104.09415.pdf
    """

    def __init__(self, cfg):
        self.rampup_coef = cfg.TRAINER.CDAC.RAMPUP_COEF
        self.rampup_iters = cfg.TRAINER.CDAC.RAMPUP_ITRS
        self.lr_multi = cfg.TRAINER.CDAC.CLASS_LR_MULTI
        self.topk = cfg.TRAINER.CDAC.TOPK_MATCH
        self.p_thresh = cfg.TRAINER.CDAC.P_THRESH
        self.aac_criterion = AAC()
        super().__init__(cfg)

    def check_cfg(self, cfg):
        assert len(
            cfg.TRAINER.CDAC.STRONG_TRANSFORMS
        ) > 0, "Strong augmentations are necessary to run CDAC"
        assert cfg.DATALOADER.K_TRANSFORMS == 2, "CDAC needs two strong augmentations of the same image."

    def build_data_loader(self):

        cfg = self.cfg
        tfm_train = build_transform(cfg, is_train=True)
        custom_tfm_train = [tfm_train]
        choices = cfg.TRAINER.CDAC.STRONG_TRANSFORMS
        tfm_train_strong = build_transform(cfg, is_train=True, choices=choices)
        custom_tfm_train += [tfm_train_strong]
        self.dm = DataManager(self.cfg, custom_tfm_train=custom_tfm_train)
        self.train_loader_x = self.dm.train_loader_x
        self.train_loader_u = self.dm.train_loader_u
        self.val_loader = self.dm.val_loader
        self.test_loader = self.dm.test_loader
        self.num_classes = self.dm.num_classes
        self.lab2cname = self.dm.lab2cname

    def build_model(self):
        cfg = self.cfg

        # Custom LR Scheduler for CDAC
        if self.cfg.TRAIN.COUNT_ITER == "train_x":
            self.num_batches = len(self.train_loader_x)
        elif self.cfg.TRAIN.COUNT_ITER == "train_u":
            self.num_batches = len(self.len_train_loader_u)
        elif self.cfg.TRAIN.COUNT_ITER == "smaller_one":
            self.num_batches = min(
                len(self.train_loader_x), len(self.train_loader_u)
            )
        self.max_iter = self.max_epoch * self.num_batches
        print("Max Iterations: %d" % self.max_iter)

        print("Building F")
        self.F = SimpleNet(cfg, cfg.MODEL, 0)
        self.F.to(self.device)
        print("# params: {:,}".format(count_num_param(self.F)))
        self.optim_F = build_optimizer(self.F, cfg.OPTIM)
        custom_lr_F = partial(
            custom_scheduler, max_iter=self.max_iter, init_lr=cfg.OPTIM.LR
        )
        self.sched_F = LambdaLR(self.optim_F, custom_lr_F)
        self.register_model("F", self.F, self.optim_F, self.sched_F)

        print("Building C")
        self.C = Prototypes(self.F.fdim, self.num_classes)
        self.C.to(self.device)
        print("# params: {:,}".format(count_num_param(self.C)))
        self.optim_C = build_optimizer(self.C, cfg.OPTIM)

        # Multiply the learning rate of C by lr_multi
        for group_param in self.optim_C.param_groups:
            group_param['lr'] *= self.lr_multi
        custom_lr_C = partial(
            custom_scheduler,
            max_iter=self.max_iter,
            init_lr=cfg.OPTIM.LR * self.lr_multi
        )
        self.sched_C = LambdaLR(self.optim_C, custom_lr_C)
        self.register_model("C", self.C, self.optim_C, self.sched_C)

    def assess_y_pred_quality(self, y_pred, y_true, mask):
        n_masked_correct = (y_pred.eq(y_true).float() * mask).sum()
        acc_thre = n_masked_correct / (mask.sum() + 1e-5)
        acc_raw = y_pred.eq(y_true).sum() / y_pred.numel()  # raw accuracy
        keep_rate = mask.sum() / mask.numel()
        output = {
            "acc_thre": acc_thre,
            "acc_raw": acc_raw,
            "keep_rate": keep_rate
        }
        return output

    def forward_backward(self, batch_x, batch_u):

        current_itr = self.epoch * self.num_batches + self.batch_idx

        input_x, label_x, input_u, input_us, input_us2, label_u = self.parse_batch_train(
            batch_x, batch_u
        )

        # Paper Reference Eq. 2 - Supervised Loss

        feat_x = self.F(input_x)
        logit_x = self.C(feat_x)
        loss_x = F.cross_entropy(logit_x, label_x)

        self.model_backward_and_update(loss_x)

        feat_u = self.F(input_u)
        feat_us = self.F(input_us)
        feat_us2 = self.F(input_us2)

        # Paper Reference Eq.3 - Adversarial Adaptive Loss
        logit_u = self.C(feat_u, reverse=True)
        logit_us = self.C(feat_us, reverse=True)
        prob_u, prob_us = F.softmax(logit_u, dim=1), F.softmax(logit_us, dim=1)

        # Get similarity matrix s_ij
        sim_mat = self.get_similarity_matrix(feat_u, self.topk, self.device)

        aac_loss = (-1. * self.aac_criterion(sim_mat, prob_u, prob_us))

        # Paper Reference Eq. 4 - Pseudo label Loss
        logit_u = self.C(feat_u)
        logit_us = self.C(feat_us)
        logit_us2 = self.C(feat_us2)
        prob_u, prob_us, prob_us2 = F.softmax(
            logit_u, dim=1
        ), F.softmax(
            logit_us, dim=1
        ), F.softmax(
            logit_us2, dim=1
        )
        prob_u = prob_u.detach()
        max_probs, max_idx = torch.max(prob_u, dim=-1)
        mask = max_probs.ge(self.p_thresh).float()
        p_u_stats = self.assess_y_pred_quality(max_idx, label_u, mask)

        pl_loss = (
            F.cross_entropy(logit_us2, max_idx, reduction='none') * mask
        ).mean()

        # Paper Reference Eq. 8 - Consistency Loss
        cons_multi = self.sigmoid_rampup(
            current_itr=current_itr, rampup_itr=self.rampup_iters
        ) * self.rampup_coef
        cons_loss = cons_multi * F.mse_loss(prob_us, prob_us2)

        loss_u = aac_loss + pl_loss + cons_loss

        self.model_backward_and_update(loss_u)

        loss_summary = {
            "loss_x": loss_x.item(),
            "acc_x": compute_accuracy(logit_x, label_x)[0].item(),
            "loss_u": loss_u.item(),
            "aac_loss": aac_loss.item(),
            "pl_loss": pl_loss.item(),
            "cons_loss": cons_loss.item(),
            "p_u_pred_acc": p_u_stats["acc_raw"],
            "p_u_pred_acc_thre": p_u_stats["acc_thre"],
            "p_u_pred_keep": p_u_stats["keep_rate"]
        }

        # Update LR after every iteration as mentioned in the paper

        self.update_lr()

        return loss_summary

    def parse_batch_train(self, batch_x, batch_u):

        input_x = batch_x["img"][0]
        label_x = batch_x["label"]

        input_u = batch_u["img"][0]
        input_us = batch_u["img2"][0]
        input_us2 = batch_u["img2"][1]
        label_u = batch_u["label"]

        input_x = input_x.to(self.device)
        label_x = label_x.to(self.device)

        input_u = input_u.to(self.device)
        input_us = input_us.to(self.device)
        input_us2 = input_us2.to(self.device)
        label_u = label_u.to(self.device)

        return input_x, label_x, input_u, input_us, input_us2, label_u

    def model_inference(self, input):
        return self.C(self.F(input))

    @staticmethod
    def get_similarity_matrix(feat, topk, device):

        feat_d = feat.detach()

        feat_d = torch.sort(
            torch.argsort(feat_d, dim=1, descending=True)[:, :topk], dim=1
        )[0]
        sim_mat = torch.zeros((feat_d.shape[0], feat_d.shape[0])).to(device)
        for row in range(feat_d.shape[0]):
            sim_mat[row, torch.all(feat_d == feat_d[row, :], dim=1)] = 1
        return sim_mat

    @staticmethod
    def sigmoid_rampup(current_itr, rampup_itr):
        """Exponential Rampup
        https://arxiv.org/abs/1610.02242
        """
        if rampup_itr == 0:
            return 1.0
        else:
            var = np.clip(current_itr, 0.0, rampup_itr)
            phase = 1.0 - var/rampup_itr
            return float(np.exp(-5.0 * phase * phase))