File size: 6,660 Bytes
8c6b5ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import copy
import numpy as np
import random
from collections import defaultdict
from torch.utils.data.sampler import Sampler, RandomSampler, SequentialSampler


class RandomDomainSampler(Sampler):
    """Randomly samples N domains each with K images
    to form a minibatch of size N*K.

    Args:
        data_source (list): list of Datums.
        batch_size (int): batch size.
        n_domain (int): number of domains to sample in a minibatch.
    """

    def __init__(self, data_source, batch_size, n_domain):
        self.data_source = data_source

        # Keep track of image indices for each domain
        self.domain_dict = defaultdict(list)
        for i, item in enumerate(data_source):
            self.domain_dict[item.domain].append(i)
        self.domains = list(self.domain_dict.keys())

        # Make sure each domain has equal number of images
        if n_domain is None or n_domain <= 0:
            n_domain = len(self.domains)
        assert batch_size % n_domain == 0
        self.n_img_per_domain = batch_size // n_domain

        self.batch_size = batch_size
        # n_domain denotes number of domains sampled in a minibatch
        self.n_domain = n_domain
        self.length = len(list(self.__iter__()))

    def __iter__(self):
        domain_dict = copy.deepcopy(self.domain_dict)
        final_idxs = []
        stop_sampling = False

        while not stop_sampling:
            selected_domains = random.sample(self.domains, self.n_domain)

            for domain in selected_domains:
                idxs = domain_dict[domain]
                selected_idxs = random.sample(idxs, self.n_img_per_domain)
                final_idxs.extend(selected_idxs)

                for idx in selected_idxs:
                    domain_dict[domain].remove(idx)

                remaining = len(domain_dict[domain])
                if remaining < self.n_img_per_domain:
                    stop_sampling = True

        return iter(final_idxs)

    def __len__(self):
        return self.length


class SeqDomainSampler(Sampler):
    """Sequential domain sampler, which randomly samples K
    images from each domain to form a minibatch.

    Args:
        data_source (list): list of Datums.
        batch_size (int): batch size.
    """

    def __init__(self, data_source, batch_size):
        self.data_source = data_source

        # Keep track of image indices for each domain
        self.domain_dict = defaultdict(list)
        for i, item in enumerate(data_source):
            self.domain_dict[item.domain].append(i)
        self.domains = list(self.domain_dict.keys())
        self.domains.sort()

        # Make sure each domain has equal number of images
        n_domain = len(self.domains)
        assert batch_size % n_domain == 0
        self.n_img_per_domain = batch_size // n_domain

        self.batch_size = batch_size
        # n_domain denotes number of domains sampled in a minibatch
        self.n_domain = n_domain
        self.length = len(list(self.__iter__()))

    def __iter__(self):
        domain_dict = copy.deepcopy(self.domain_dict)
        final_idxs = []
        stop_sampling = False

        while not stop_sampling:
            for domain in self.domains:
                idxs = domain_dict[domain]
                selected_idxs = random.sample(idxs, self.n_img_per_domain)
                final_idxs.extend(selected_idxs)

                for idx in selected_idxs:
                    domain_dict[domain].remove(idx)

                remaining = len(domain_dict[domain])
                if remaining < self.n_img_per_domain:
                    stop_sampling = True

        return iter(final_idxs)

    def __len__(self):
        return self.length


class RandomClassSampler(Sampler):
    """Randomly samples N classes each with K instances to
    form a minibatch of size N*K.

    Modified from https://github.com/KaiyangZhou/deep-person-reid.

    Args:
        data_source (list): list of Datums.
        batch_size (int): batch size.
        n_ins (int): number of instances per class to sample in a minibatch.
    """

    def __init__(self, data_source, batch_size, n_ins):
        if batch_size < n_ins:
            raise ValueError(
                "batch_size={} must be no less "
                "than n_ins={}".format(batch_size, n_ins)
            )

        self.data_source = data_source
        self.batch_size = batch_size
        self.n_ins = n_ins
        self.ncls_per_batch = self.batch_size // self.n_ins
        self.index_dic = defaultdict(list)
        for index, item in enumerate(data_source):
            self.index_dic[item.label].append(index)
        self.labels = list(self.index_dic.keys())
        assert len(self.labels) >= self.ncls_per_batch

        # estimate number of images in an epoch
        self.length = len(list(self.__iter__()))

    def __iter__(self):
        batch_idxs_dict = defaultdict(list)

        for label in self.labels:
            idxs = copy.deepcopy(self.index_dic[label])
            if len(idxs) < self.n_ins:
                idxs = np.random.choice(idxs, size=self.n_ins, replace=True)
            random.shuffle(idxs)
            batch_idxs = []
            for idx in idxs:
                batch_idxs.append(idx)
                if len(batch_idxs) == self.n_ins:
                    batch_idxs_dict[label].append(batch_idxs)
                    batch_idxs = []

        avai_labels = copy.deepcopy(self.labels)
        final_idxs = []

        while len(avai_labels) >= self.ncls_per_batch:
            selected_labels = random.sample(avai_labels, self.ncls_per_batch)
            for label in selected_labels:
                batch_idxs = batch_idxs_dict[label].pop(0)
                final_idxs.extend(batch_idxs)
                if len(batch_idxs_dict[label]) == 0:
                    avai_labels.remove(label)

        return iter(final_idxs)

    def __len__(self):
        return self.length


def build_sampler(
    sampler_type,
    cfg=None,
    data_source=None,
    batch_size=32,
    n_domain=0,
    n_ins=16
):
    if sampler_type == "RandomSampler":
        return RandomSampler(data_source)

    elif sampler_type == "SequentialSampler":
        return SequentialSampler(data_source)

    elif sampler_type == "RandomDomainSampler":
        return RandomDomainSampler(data_source, batch_size, n_domain)

    elif sampler_type == "SeqDomainSampler":
        return SeqDomainSampler(data_source, batch_size)

    elif sampler_type == "RandomClassSampler":
        return RandomClassSampler(data_source, batch_size, n_ins)

    else:
        raise ValueError("Unknown sampler type: {}".format(sampler_type))