File size: 9,718 Bytes
8c6b5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
from yacs.config import CfgNode as CN
###########################
# Config definition
###########################
_C = CN()
_C.VERSION = 1
# Directory to save the output files (like log.txt and model weights)
_C.OUTPUT_DIR = "./output"
# Path to a directory where the files were saved previously
_C.RESUME = ""
# Set seed to negative value to randomize everything
# Set seed to positive value to use a fixed seed
_C.SEED = -1
_C.USE_CUDA = True
# Print detailed information
# E.g. trainer, dataset, and backbone
_C.VERBOSE = True
###########################
# Input
###########################
_C.INPUT = CN()
_C.INPUT.SIZE = (224, 224)
# Mode of interpolation in resize functions
_C.INPUT.INTERPOLATION = "bilinear"
# For available choices please refer to transforms.py
_C.INPUT.TRANSFORMS = ()
# If True, tfm_train and tfm_test will be None
_C.INPUT.NO_TRANSFORM = False
# Mean and std (default: ImageNet)
_C.INPUT.PIXEL_MEAN = [0.485, 0.456, 0.406]
_C.INPUT.PIXEL_STD = [0.229, 0.224, 0.225]
# Random crop
_C.INPUT.CROP_PADDING = 4
# Random resized crop
_C.INPUT.RRCROP_SCALE = (0.08, 1.0)
# Cutout
_C.INPUT.CUTOUT_N = 1
_C.INPUT.CUTOUT_LEN = 16
# Gaussian noise
_C.INPUT.GN_MEAN = 0.0
_C.INPUT.GN_STD = 0.15
# RandomAugment
_C.INPUT.RANDAUGMENT_N = 2
_C.INPUT.RANDAUGMENT_M = 10
# ColorJitter (brightness, contrast, saturation, hue)
_C.INPUT.COLORJITTER_B = 0.4
_C.INPUT.COLORJITTER_C = 0.4
_C.INPUT.COLORJITTER_S = 0.4
_C.INPUT.COLORJITTER_H = 0.1
# Random gray scale's probability
_C.INPUT.RGS_P = 0.2
# Gaussian blur
_C.INPUT.GB_P = 0.5 # propability of applying this operation
_C.INPUT.GB_K = 21 # kernel size (should be an odd number)
###########################
# Dataset
###########################
_C.DATASET = CN()
# Directory where datasets are stored
_C.DATASET.ROOT = ""
_C.DATASET.NAME = ""
# List of source/target domains' names (strings)
# Do not apply to some datasets, which have pre-defined splits
_C.DATASET.SOURCE_DOMAINS = ()
_C.DATASET.TARGET_DOMAINS = ()
# Number of labeled instances in total
# Useful for the semi-supervised learning
_C.DATASET.NUM_LABELED = -1
# Number of images per class
_C.DATASET.NUM_SHOTS = -1
# Percentage of validation data (only used for SSL datasets)
# Set to 0 if do not want to use val data
# Using val data for hyperparameter tuning was done in Oliver et al. 2018
_C.DATASET.VAL_PERCENT = 0.1
# Fold index for STL-10 dataset (normal range is 0 - 9)
# Negative number means None
_C.DATASET.STL10_FOLD = -1
# CIFAR-10/100-C's corruption type and intensity level
_C.DATASET.CIFAR_C_TYPE = ""
_C.DATASET.CIFAR_C_LEVEL = 1
# Use all data in the unlabeled data set (e.g. FixMatch)
_C.DATASET.ALL_AS_UNLABELED = False
###########################
# Dataloader
###########################
_C.DATALOADER = CN()
_C.DATALOADER.NUM_WORKERS = 4
# Apply transformations to an image K times (during training)
_C.DATALOADER.K_TRANSFORMS = 1
# img0 denotes image tensor without augmentation
# Useful for consistency learning
_C.DATALOADER.RETURN_IMG0 = False
# Setting for the train_x data-loader
_C.DATALOADER.TRAIN_X = CN()
_C.DATALOADER.TRAIN_X.SAMPLER = "RandomSampler"
_C.DATALOADER.TRAIN_X.BATCH_SIZE = 32
# Parameter for RandomDomainSampler
# 0 or -1 means sampling from all domains
_C.DATALOADER.TRAIN_X.N_DOMAIN = 0
# Parameter of RandomClassSampler
# Number of instances per class
_C.DATALOADER.TRAIN_X.N_INS = 16
# Setting for the train_u data-loader
_C.DATALOADER.TRAIN_U = CN()
# Set to false if you want to have unique
# data loader params for train_u
_C.DATALOADER.TRAIN_U.SAME_AS_X = True
_C.DATALOADER.TRAIN_U.SAMPLER = "RandomSampler"
_C.DATALOADER.TRAIN_U.BATCH_SIZE = 32
_C.DATALOADER.TRAIN_U.N_DOMAIN = 0
_C.DATALOADER.TRAIN_U.N_INS = 16
# Setting for the test data-loader
_C.DATALOADER.TEST = CN()
_C.DATALOADER.TEST.SAMPLER = "SequentialSampler"
_C.DATALOADER.TEST.BATCH_SIZE = 32
###########################
# Model
###########################
_C.MODEL = CN()
# Path to model weights (for initialization)
_C.MODEL.INIT_WEIGHTS = ""
_C.MODEL.BACKBONE = CN()
_C.MODEL.BACKBONE.NAME = ""
_C.MODEL.BACKBONE.PRETRAINED = True
# Definition of embedding layers
_C.MODEL.HEAD = CN()
# If none, do not construct embedding layers, the
# backbone's output will be passed to the classifier
_C.MODEL.HEAD.NAME = ""
# Structure of hidden layers (a list), e.g. [512, 512]
# If undefined, no embedding layer will be constructed
_C.MODEL.HEAD.HIDDEN_LAYERS = ()
_C.MODEL.HEAD.ACTIVATION = "relu"
_C.MODEL.HEAD.BN = True
_C.MODEL.HEAD.DROPOUT = 0.0
###########################
# Optimization
###########################
_C.OPTIM = CN()
_C.OPTIM.NAME = "adam"
_C.OPTIM.LR = 0.0003
_C.OPTIM.WEIGHT_DECAY = 5e-4
_C.OPTIM.MOMENTUM = 0.9
_C.OPTIM.SGD_DAMPNING = 0
_C.OPTIM.SGD_NESTEROV = False
_C.OPTIM.RMSPROP_ALPHA = 0.99
# The following also apply to other
# adaptive optimizers like adamw
_C.OPTIM.ADAM_BETA1 = 0.9
_C.OPTIM.ADAM_BETA2 = 0.999
# STAGED_LR allows different layers to have
# different lr, e.g. pre-trained base layers
# can be assigned a smaller lr than the new
# classification layer
_C.OPTIM.STAGED_LR = False
_C.OPTIM.NEW_LAYERS = ()
_C.OPTIM.BASE_LR_MULT = 0.1
# Learning rate scheduler
_C.OPTIM.LR_SCHEDULER = "single_step"
# -1 or 0 means the stepsize is equal to max_epoch
_C.OPTIM.STEPSIZE = (-1, )
_C.OPTIM.GAMMA = 0.1
_C.OPTIM.MAX_EPOCH = 10
# Set WARMUP_EPOCH larger than 0 to activate warmup training
_C.OPTIM.WARMUP_EPOCH = -1
# Either linear or constant
_C.OPTIM.WARMUP_TYPE = "linear"
# Constant learning rate when type=constant
_C.OPTIM.WARMUP_CONS_LR = 1e-5
# Minimum learning rate when type=linear
_C.OPTIM.WARMUP_MIN_LR = 1e-5
# Recount epoch for the next scheduler (last_epoch=-1)
# Otherwise last_epoch=warmup_epoch
_C.OPTIM.WARMUP_RECOUNT = True
###########################
# Train
###########################
_C.TRAIN = CN()
# How often (epoch) to save model during training
# Set to 0 or negative value to only save the last one
_C.TRAIN.CHECKPOINT_FREQ = 0
# How often (batch) to print training information
_C.TRAIN.PRINT_FREQ = 10
# Use 'train_x', 'train_u' or 'smaller_one' to count
# the number of iterations in an epoch (for DA and SSL)
_C.TRAIN.COUNT_ITER = "train_x"
###########################
# Test
###########################
_C.TEST = CN()
_C.TEST.EVALUATOR = "Classification"
_C.TEST.PER_CLASS_RESULT = False
# Compute confusion matrix, which will be saved
# to $OUTPUT_DIR/cmat.pt
_C.TEST.COMPUTE_CMAT = False
# If NO_TEST=True, no testing will be conducted
_C.TEST.NO_TEST = False
# Use test or val set for FINAL evaluation
_C.TEST.SPLIT = "test"
# Which model to test after training (last_step or best_val)
# If best_val, evaluation is done every epoch (if val data
# is unavailable, test data will be used)
_C.TEST.FINAL_MODEL = "last_step"
###########################
# Trainer specifics
###########################
_C.TRAINER = CN()
_C.TRAINER.NAME = ""
######
# DA
######
# MCD
_C.TRAINER.MCD = CN()
_C.TRAINER.MCD.N_STEP_F = 4 # number of steps to train F
# MME
_C.TRAINER.MME = CN()
_C.TRAINER.MME.LMDA = 0.1 # weight for the entropy loss
# CDAC
_C.TRAINER.CDAC = CN()
_C.TRAINER.CDAC.CLASS_LR_MULTI = 10
_C.TRAINER.CDAC.RAMPUP_COEF = 30
_C.TRAINER.CDAC.RAMPUP_ITRS = 1000
_C.TRAINER.CDAC.TOPK_MATCH = 5
_C.TRAINER.CDAC.P_THRESH = 0.95
_C.TRAINER.CDAC.STRONG_TRANSFORMS = ()
# SE (SelfEnsembling)
_C.TRAINER.SE = CN()
_C.TRAINER.SE.EMA_ALPHA = 0.999
_C.TRAINER.SE.CONF_THRE = 0.95
_C.TRAINER.SE.RAMPUP = 300
# M3SDA
_C.TRAINER.M3SDA = CN()
_C.TRAINER.M3SDA.LMDA = 0.5 # weight for the moment distance loss
_C.TRAINER.M3SDA.N_STEP_F = 4 # follow MCD
# DAEL
_C.TRAINER.DAEL = CN()
_C.TRAINER.DAEL.WEIGHT_U = 0.5 # weight on the unlabeled loss
_C.TRAINER.DAEL.CONF_THRE = 0.95 # confidence threshold
_C.TRAINER.DAEL.STRONG_TRANSFORMS = ()
######
# DG
######
# CrossGrad
_C.TRAINER.CROSSGRAD = CN()
_C.TRAINER.CROSSGRAD.EPS_F = 1.0 # scaling parameter for D's gradients
_C.TRAINER.CROSSGRAD.EPS_D = 1.0 # scaling parameter for F's gradients
_C.TRAINER.CROSSGRAD.ALPHA_F = 0.5 # balancing weight for the label net's loss
_C.TRAINER.CROSSGRAD.ALPHA_D = 0.5 # balancing weight for the domain net's loss
# DDAIG
_C.TRAINER.DDAIG = CN()
_C.TRAINER.DDAIG.G_ARCH = "" # generator's architecture
_C.TRAINER.DDAIG.LMDA = 0.3 # perturbation weight
_C.TRAINER.DDAIG.CLAMP = False # clamp perturbation values
_C.TRAINER.DDAIG.CLAMP_MIN = -1.0
_C.TRAINER.DDAIG.CLAMP_MAX = 1.0
_C.TRAINER.DDAIG.WARMUP = 0
_C.TRAINER.DDAIG.ALPHA = 0.5 # balancing weight for the losses
# DAELDG (the DG version of DAEL)
_C.TRAINER.DAELDG = CN()
_C.TRAINER.DAELDG.WEIGHT_U = 0.5 # weight on the unlabeled loss
_C.TRAINER.DAELDG.CONF_THRE = 0.95 # confidence threshold
_C.TRAINER.DAELDG.STRONG_TRANSFORMS = ()
# DOMAINMIX
_C.TRAINER.DOMAINMIX = CN()
_C.TRAINER.DOMAINMIX.TYPE = "crossdomain"
_C.TRAINER.DOMAINMIX.ALPHA = 1.0
_C.TRAINER.DOMAINMIX.BETA = 1.0
######
# SSL
######
# EntMin
_C.TRAINER.ENTMIN = CN()
_C.TRAINER.ENTMIN.LMDA = 1e-3 # weight on the entropy loss
# Mean Teacher
_C.TRAINER.MEANTEACHER = CN()
_C.TRAINER.MEANTEACHER.WEIGHT_U = 1.0 # weight on the unlabeled loss
_C.TRAINER.MEANTEACHER.EMA_ALPHA = 0.999
_C.TRAINER.MEANTEACHER.RAMPUP = 5 # epochs used to ramp up the loss_u weight
# MixMatch
_C.TRAINER.MIXMATCH = CN()
_C.TRAINER.MIXMATCH.WEIGHT_U = 100.0 # weight on the unlabeled loss
_C.TRAINER.MIXMATCH.TEMP = 2.0 # temperature for sharpening the probability
_C.TRAINER.MIXMATCH.MIXUP_BETA = 0.75
_C.TRAINER.MIXMATCH.RAMPUP = 20000 # steps used to ramp up the loss_u weight
# FixMatch
_C.TRAINER.FIXMATCH = CN()
_C.TRAINER.FIXMATCH.WEIGHT_U = 1.0 # weight on the unlabeled loss
_C.TRAINER.FIXMATCH.CONF_THRE = 0.95 # confidence threshold
_C.TRAINER.FIXMATCH.STRONG_TRANSFORMS = ()
|