File size: 7,577 Bytes
8c6b5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
# How to Install Datasets
`$DATA` denotes the location where datasets are installed, e.g.
```
$DATA/
|ββ office31/
|ββ office_home/
|ββ visda17/
```
[Domain Adaptation](#domain-adaptation)
- [Office-31](#office-31)
- [Office-Home](#office-home)
- [VisDA17](#visda17)
- [CIFAR10-STL10](#cifar10-stl10)
- [Digit-5](#digit-5)
- [DomainNet](#domainnet)
- [miniDomainNet](#miniDomainNet)
[Domain Generalization](#domain-generalization)
- [PACS](#pacs)
- [VLCS](#vlcs)
- [Office-Home-DG](#office-home-dg)
- [Digits-DG](#digits-dg)
- [Digit-Single](#digit-single)
- [CIFAR-10-C](#cifar-10-c)
- [CIFAR-100-C](#cifar-100-c)
- [WILDS](#wilds)
[Semi-Supervised Learning](#semi-supervised-learning)
- [CIFAR10/100 and SVHN](#cifar10100-and-svhn)
- [STL10](#stl10)
## Domain Adaptation
### Office-31
Download link: https://people.eecs.berkeley.edu/~jhoffman/domainadapt/#datasets_code.
File structure:
```
office31/
|ββ amazon/
| |ββ back_pack/
| |ββ bike/
| |ββ ...
|ββ dslr/
| |ββ back_pack/
| |ββ bike/
| |ββ ...
|ββ webcam/
| |ββ back_pack/
| |ββ bike/
| |ββ ...
```
Note that within each domain folder you need to move all class folders out of the `images/` folder and then delete the `images/` folder.
### Office-Home
Download link: http://hemanthdv.org/OfficeHome-Dataset/.
File structure:
```
office_home/
|ββ art/
|ββ clipart/
|ββ product/
|ββ real_world/
```
### VisDA17
Download link: http://ai.bu.edu/visda-2017/.
The dataset can also be downloaded using our script at `datasets/da/visda17.sh`. Run the following command in your terminal under `Dassl.pytorch/datasets/da`,
```bash
sh visda17.sh $DATA
```
Once the download is finished, the file structure will look like
```
visda17/
|ββ train/
|ββ test/
|ββ validation/
```
### CIFAR10-STL10
Run the following command in your terminal under `Dassl.pytorch/datasets/da`,
```bash
python cifar_stl.py $DATA/cifar_stl
```
This will create a folder named `cifar_stl` under `$DATA`. The file structure will look like
```
cifar_stl/
|ββ cifar/
| |ββ train/
| |ββ test/
|ββ stl/
| |ββ train/
| |ββ test/
```
Note that only 9 classes shared by both datasets are kept.
### Digit-5
Create a folder `$DATA/digit5` and download to this folder the dataset from [here](https://github.com/VisionLearningGroup/VisionLearningGroup.github.io/tree/master/M3SDA/code_MSDA_digit#digit-five-download). This should give you
```
digit5/
|ββ Digit-Five/
```
Then, run the following command in your terminal under `Dassl.pytorch/datasets/da`,
```bash
python digit5.py $DATA/digit5
```
This will extract the data and organize the file structure as
```
digit5/
|ββ Digit-Five/
|ββ mnist/
|ββ mnist_m/
|ββ usps/
|ββ svhn/
|ββ syn/
```
### DomainNet
Download link: http://ai.bu.edu/M3SDA/. (Please download the cleaned version of split files)
File structure:
```
domainnet/
|ββ clipart/
|ββ infograph/
|ββ painting/
|ββ quickdraw/
|ββ real/
|ββ sketch/
|ββ splits/
| |ββ clipart_train.txt
| |ββ clipart_test.txt
| |ββ ...
```
### miniDomainNet
You need to download the DomainNet dataset first. The miniDomainNet's split files can be downloaded at this [google drive](https://drive.google.com/open?id=15rrLDCrzyi6ZY-1vJar3u7plgLe4COL7). After the zip file is extracted, you should have the folder `$DATA/domainnet/splits_mini/`.
## Domain Generalization
### PACS
Download link: [google drive](https://drive.google.com/open?id=1m4X4fROCCXMO0lRLrr6Zz9Vb3974NWhE).
File structure:
```
pacs/
|ββ images/
|ββ splits/
```
You do not necessarily have to manually download this dataset. Once you run ``tools/train.py``, the code will detect if the dataset exists or not and automatically download the dataset to ``$DATA`` if missing. This also applies to VLCS, Office-Home-DG, and Digits-DG.
### VLCS
Download link: [google drive](https://drive.google.com/file/d/1r0WL5DDqKfSPp9E3tRENwHaXNs1olLZd/view?usp=sharing) (credit to https://github.com/fmcarlucci/JigenDG#vlcs)
File structure:
```
VLCS/
|ββ CALTECH/
|ββ LABELME/
|ββ PASCAL/
|ββ SUN/
```
### Office-Home-DG
Download link: [google drive](https://drive.google.com/open?id=1gkbf_KaxoBws-GWT3XIPZ7BnkqbAxIFa).
File structure:
```
office_home_dg/
|ββ art/
|ββ clipart/
|ββ product/
|ββ real_world/
```
### Digits-DG
Download link: [google driv](https://drive.google.com/open?id=15V7EsHfCcfbKgsDmzQKj_DfXt_XYp_P7).
File structure:
```
digits_dg/
|ββ mnist/
|ββ mnist_m/
|ββ svhn/
|ββ syn/
```
### Digit-Single
Follow the steps for [Digit-5](#digit-5) to organize the dataset.
### CIFAR-10-C
First download the CIFAR-10-C dataset from https://zenodo.org/record/2535967#.YFxHEWQzb0o to, e.g., $DATA, and extract the file under the same directory. Then, navigate to `Dassl.pytorch/datasets/dg` and run the following command in your terminal
```bash
python cifar_c.py $DATA/CIFAR-10-C
```
where the first argument denotes the path to the (uncompressed) CIFAR-10-C dataset.
The script will extract images from the `.npy` files and save them to `cifar10_c/` created under $DATA. The file structure will look like
```
cifar10_c/
|ββ brightness/
| |ββ 1/ # 5 intensity levels in total
| |ββ 2/
| |ββ 3/
| |ββ 4/
| |ββ 5/
|ββ ... # 19 corruption types in total
```
Note that `cifar10_c/` only contains the test images. The training images are the normal CIFAR-10 images. See [CIFAR10/100 and SVHN](#cifar10100-and-svhn) for how to prepare the CIFAR-10 dataset.
### CIFAR-100-C
First download the CIFAR-100-C dataset from https://zenodo.org/record/3555552#.YFxpQmQzb0o to, e.g., $DATA, and extract the file under the same directory. Then, navigate to `Dassl.pytorch/datasets/dg` and run the following command in your terminal
```bash
python cifar_c.py $DATA/CIFAR-100-C
```
where the first argument denotes the path to the (uncompressed) CIFAR-100-C dataset.
The script will extract images from the `.npy` files and save them to `cifar100_c/` created under $DATA. The file structure will look like
```
cifar100_c/
|ββ brightness/
| |ββ 1/ # 5 intensity levels in total
| |ββ 2/
| |ββ 3/
| |ββ 4/
| |ββ 5/
|ββ ... # 19 corruption types in total
```
Note that `cifar100_c/` only contains the test images. The training images are the normal CIFAR-100 images. See [CIFAR10/100 and SVHN](#cifar10100-and-svhn) for how to prepare the CIFAR-100 dataset.
### WILDS
No action is required to preprocess WILDS's datasets. The code will automatically download the data.
## Semi-Supervised Learning
### CIFAR10/100 and SVHN
Run the following command in your terminal under `Dassl.pytorch/datasets/ssl`,
```bash
python cifar10_cifar100_svhn.py $DATA
```
This will create three folders under `$DATA`, i.e.
```
cifar10/
|ββ train/
|ββ test/
cifar100/
|ββ train/
|ββ test/
svhn/
|ββ train/
|ββ test/
```
### STL10
Run the following command in your terminal under `Dassl.pytorch/datasets/ssl`,
```bash
python stl10.py $DATA/stl10
```
This will create a folder named `stl10` under `$DATA` and extract the data into three folders, i.e. `train`, `test` and `unlabeled`. Then, download from http://ai.stanford.edu/~acoates/stl10/ the "Binary files" and extract it under `stl10`.
The file structure will look like
```
stl10/
|ββ train/
|ββ test/
|ββ unlabeled/
|ββ stl10_binary/
``` |