File size: 2,124 Bytes
e081c89
 
 
 
 
 
 
 
 
f221e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e081c89
 
 
 
f221e0f
e081c89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f221e0f
e081c89
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
pipeline_tag: token-classification
widget:
  - text: >-
      Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic
      to Paris.
    example_title: Amelia Earhart
  - text: >-
      Leonardo di ser Piero da Vinci painted the Mona Lisa based on Italian noblewoman
      Lisa del Giocondo.
    example_title: Leonardo da Vinci
model-index:
  - name: >-
      SpanMarker w. roberta-large on OntoNotes v5.0 by Tom Aarsen
    results:
      - task:
          type: token-classification
          name: Named Entity Recognition
        dataset:
          type: tner/ontonotes5
          name: OntoNotes v5.0
          split: test
          revision: cf9ef57ad260810be1298ba795d83c09a915e959
        metrics:
          - type: f1
            value: 0.9153
            name: F1
          - type: precision
            value: 0.9116
            name: Precision
          - type: recall
            value: 0.9191
            name: Recall
datasets:
  - tner/ontonotes5
language:
  - en
metrics:
  - f1
  - recall
  - precision
---

# SpanMarker for Named Entity Recognition

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. In particular, this SpanMarker model uses [roberta-large](https://huggingface.co/roberta-large) as the underlying encoder. See [train.py](train.py) for the training script.

## Usage

To use this model for inference, first install the `span_marker` library:

```bash
pip install span_marker
```

You can then run inference with this model like so:

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-roberta-large-ontonotes5")
# Run inference
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
```

See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library.