File size: 8,297 Bytes
67a38be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
language:
- tl
license: gpl-3.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- ljvmiranda921/tlunified-ner
metrics:
- precision
- recall
- f1
widget:
- text: MANILA - Binalewala ng Philippine National Police (PNP) nitong Sabado ang
    posibleng paglulunsad ng tinatawag na " sympathy attacks " ng Moro National Liberation
    Front (MNLF) at Abu Sayyaf matapos arestuhin si Indanan, Sulu Mayor Alvarez Isnaji.
- text: Pinatawan din ng apat na buwang suspensyon si Herma Gonzales - Escudero, chief
    revenue officer III ng BIR - Cotabato City, dahil sa kasong dishonesty at limang
    kaso ng perjury sa Municipal Trial Court ng Cotabato City . Bunga ito ng kanyang
    kabiguan na ideklara sa kanyang SALN noong 2002 - 2004 ang 200 metro kwadradong
    lote sa South Cotabato at Toyota Revo noong 2001 SALN at undervaluation ng kanyang
    mga ari - arian sa lalawigan noong 2000 - 2004 SALN.
- text: Sa tila pagpapabaya sa mga magsasaka, sinabi ni Escudero na hindi mangyayari
    ang pangarap ng Department of Agriculture (DA) na maging self - sufficient ang
    Pilipinas sa bigas.
- text: MANILA - Tiniyak ng pinuno ng Government Service Insurance System (GSIS) na
    tatapatan nito ang pro - Meralco advertisement ni Judy Ann Santos upang isulong
    ang kanyang posisyon na dapat ibaba ang singil sa kuryente.
- text: Idinagdag ni South Cotabato Rep Darlene Antonino - Custodio, na illegal na
    ipagpaliban ang halalan sa ARMM kung ang gagamitin lamang basehan ay ang ipapasang
    panukala ng Kongreso.
pipeline_tag: token-classification
co2_eq_emissions:
  emissions: 22.090476722294312
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.238
  hardware_used: 1 x NVIDIA GeForce RTX 3090
base_model: bert-base-multilingual-cased
model-index:
- name: SpanMarker with bert-base-multilingual-cased on TLUnified
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: TLUnified
      type: ljvmiranda921/tlunified-ner
      split: test
    metrics:
    - type: f1
      value: 0.8886810102899907
      name: F1
    - type: precision
      value: 0.8736971183323115
      name: Precision
    - type: recall
      value: 0.9041878172588832
      name: Recall
---

# SpanMarker with bert-base-multilingual-cased on TLUnified

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [TLUnified](https://huggingface.co/datasets/ljvmiranda921/tlunified-ner) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) as the underlying encoder.

## Model Details

### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [TLUnified](https://huggingface.co/datasets/ljvmiranda921/tlunified-ner)
- **Language:** tl
- **License:** gpl-3.0

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label | Examples                                                                                            |
|:------|:----------------------------------------------------------------------------------------------------|
| LOC   | "Israel", "Batasan", "United States"                                                                |
| ORG   | "MMDA", "International Monitoring Team", "Coordinating Committees for the Cessation of Hostilities" |
| PER   | "Puno", "Fernando", "Villavicencio"                                                                 |

## Evaluation

### Metrics
| Label   | Precision | Recall | F1     |
|:--------|:----------|:-------|:-------|
| **all** | 0.8737    | 0.9042 | 0.8887 |
| LOC     | 0.8830    | 0.9084 | 0.8955 |
| ORG     | 0.7579    | 0.8587 | 0.8052 |
| PER     | 0.9264    | 0.9220 | 0.9242 |

## Uses

### Direct Use for Inference

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-mbert-base-tlunified")
# Run inference
entities = model.predict("Idinagdag ni South Cotabato Rep Darlene Antonino - Custodio, na illegal na ipagpaliban ang halalan sa ARMM kung ang gagamitin lamang basehan ay ang ipapasang panukala ng Kongreso.")
```

### Downstream Use
You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

```python
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-mbert-base-tlunified")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("tomaarsen/span-marker-mbert-base-tlunified-finetuned")
```
</details>

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set          | Min | Median  | Max |
|:----------------------|:----|:--------|:----|
| Sentence length       | 1   | 31.7625 | 150 |
| Entities per sentence | 0   | 2.0661  | 38  |

### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training Results
| Epoch  | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.6803 | 400  | 0.0074          | 0.8552               | 0.8835            | 0.8691        | 0.9774              |
| 1.3605 | 800  | 0.0072          | 0.8709               | 0.9034            | 0.8869        | 0.9798              |
| 2.0408 | 1200 | 0.0070          | 0.8753               | 0.9053            | 0.8900        | 0.9812              |
| 2.7211 | 1600 | 0.0065          | 0.8876               | 0.9003            | 0.8939        | 0.9807              |

### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Carbon Emitted**: 0.022 kg of CO2
- **Hours Used**: 0.238 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.9.16
- SpanMarker: 1.5.1.dev
- Transformers: 4.30.0
- PyTorch: 2.0.1+cu118
- Datasets: 2.14.0
- Tokenizers: 0.13.3

## Citation

### BibTeX
```
@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->