File size: 67,451 Bytes
a4e7fe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6709351
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100231
- loss:CachedMultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
widget:
- source_sentence: who ordered the charge of the light brigade
  sentences:
  - Charge of the Light Brigade The Charge of the Light Brigade was a charge of British
    light cavalry led by Lord Cardigan against Russian forces during the Battle of
    Balaclava on 25 October 1854 in the Crimean War. Lord Raglan, overall commander
    of the British forces, had intended to send the Light Brigade to prevent the Russians
    from removing captured guns from overrun Turkish positions, a task well-suited
    to light cavalry.
  - UNICEF The United Nations International Children's Emergency Fund was created
    by the United Nations General Assembly on 11 December 1946, to provide emergency
    food and healthcare to children in countries that had been devastated by World
    War II. The Polish physician Ludwik Rajchman is widely regarded as the founder
    of UNICEF and served as its first chairman from 1946. On Rajchman's suggestion,
    the American Maurice Pate was appointed its first executive director, serving
    from 1947 until his death in 1965.[5][6] In 1950, UNICEF's mandate was extended
    to address the long-term needs of children and women in developing countries everywhere.
    In 1953 it became a permanent part of the United Nations System, and the words
    "international" and "emergency" were dropped from the organization's name, making
    it simply the United Nations Children's Fund, retaining the original acronym,
    "UNICEF".[3]
  - Marcus Jordan Marcus James Jordan (born December 24, 1990) is an American former
    college basketball player who played for the UCF Knights men's basketball team
    of Conference USA.[1] He is the son of retired Hall of Fame basketball player
    Michael Jordan.
- source_sentence: what part of the cow is the rib roast
  sentences:
  - Standing rib roast A standing rib roast, also known as prime rib, is a cut of
    beef from the primal rib, one of the nine primal cuts of beef. While the entire
    rib section comprises ribs six through 12, a standing rib roast may contain anywhere
    from two to seven ribs.
  - Blaine Anderson Kurt begins to mend their relationship in "Thanksgiving", just
    before New Directions loses at Sectionals to the Warblers, and they spend Christmas
    together in New York City.[29][30] Though he and Kurt continue to be on good terms,
    Blaine finds himself developing a crush on his best friend, Sam, which he knows
    will come to nothing as he knows Sam is not gay; the two of them team up to find
    evidence that the Warblers cheated at Sectionals, which means New Directions will
    be competing at Regionals. He ends up going to the Sadie Hawkins dance with Tina
    Cohen-Chang (Jenna Ushkowitz), who has developed a crush on him, but as friends
    only.[31] When Kurt comes to Lima for the wedding of glee club director Will (Matthew
    Morrison) and Emma (Jayma Mays)—which Emma flees—he and Blaine make out beforehand,
    and sleep together afterward, though they do not resume a permanent relationship.[32]
  - 'Soviet Union The Soviet Union (Russian: Сове́тский Сою́з, tr. Sovétsky Soyúz,
    IPA: [sɐˈvʲɛt͡skʲɪj sɐˈjus] ( listen)), officially the Union of Soviet Socialist
    Republics (Russian: Сою́з Сове́тских Социалисти́ческих Респу́блик, tr. Soyúz Sovétskikh
    Sotsialistícheskikh Respúblik, IPA: [sɐˈjus sɐˈvʲɛtskʲɪx sətsɨəlʲɪsˈtʲitɕɪskʲɪx
    rʲɪˈspublʲɪk] ( listen)), abbreviated as the USSR (Russian: СССР, tr. SSSR), was
    a socialist state in Eurasia that existed from 1922 to 1991. Nominally a union
    of multiple national Soviet republics,[a] its government and economy were highly
    centralized. The country was a one-party state, governed by the Communist Party
    with Moscow as its capital in its largest republic, the Russian Soviet Federative
    Socialist Republic. The Russian nation had constitutionally equal status among
    the many nations of the union but exerted de facto dominance in various respects.[7]
    Other major urban centres were Leningrad, Kiev, Minsk, Alma-Ata and Novosibirsk.
    The Soviet Union was one of the five recognized nuclear weapons states and possessed
    the largest stockpile of weapons of mass destruction.[8] It was a founding permanent
    member of the United Nations Security Council, as well as a member of the Organization
    for Security and Co-operation in Europe (OSCE) and the leading member of the Council
    for Mutual Economic Assistance (CMEA) and the Warsaw Pact.'
- source_sentence: what is the current big bang theory season
  sentences:
  - Byzantine army From the seventh to the 12th centuries, the Byzantine army was
    among the most powerful and effective military forces in the world – neither
    Middle Ages Europe nor (following its early successes) the fracturing Caliphate
    could match the strategies and the efficiency of the Byzantine army. Restricted
    to a largely defensive role in the 7th to mid-9th centuries, the Byzantines developed
    the theme-system to counter the more powerful Caliphate. From the mid-9th century,
    however, they gradually went on the offensive, culminating in the great conquests
    of the 10th century under a series of soldier-emperors such as Nikephoros II Phokas,
    John Tzimiskes and Basil II. The army they led was less reliant on the militia
    of the themes; it was by now a largely professional force, with a strong and well-drilled
    infantry at its core and augmented by a revived heavy cavalry arm. With one of
    the most powerful economies in the world at the time, the Empire had the resources
    to put to the field a powerful host when needed, in order to reclaim its long-lost
    territories.
  - The Big Bang Theory The Big Bang Theory is an American television sitcom created
    by Chuck Lorre and Bill Prady, both of whom serve as executive producers on the
    series, along with Steven Molaro. All three also serve as head writers. The show
    premiered on CBS on September 24, 2007.[3] The series' tenth season premiered
    on September 19, 2016.[4] In March 2017, the series was renewed for two additional
    seasons, bringing its total to twelve, and running through the 2018–19 television
    season. The eleventh season is set to premiere on September 25, 2017.[5]
  - 2016 NCAA Division I Softball Tournament The 2016 NCAA Division I Softball Tournament
    was held from May 20 through June 8, 2016 as the final part of the 2016 NCAA Division
    I softball season. The 64 NCAA Division I college softball teams were to be selected
    out of an eligible 293 teams on May 15, 2016. Thirty-two teams were awarded an
    automatic bid as champions of their conference, and thirty-two teams were selected
    at-large by the NCAA Division I softball selection committee. The tournament culminated
    with eight teams playing in the 2016 Women's College World Series at ASA Hall
    of Fame Stadium in Oklahoma City in which the Oklahoma Sooners were crowned the
    champions.
- source_sentence: what happened to tates mom on days of our lives
  sentences:
  - 'Paige O''Hara Donna Paige Helmintoller, better known as Paige O''Hara (born May
    10, 1956),[1] is an American actress, voice actress, singer and painter. O''Hara
    began her career as a Broadway actress in 1983 when she portrayed Ellie May Chipley
    in the musical Showboat. In 1991, she made her motion picture debut in Disney''s
    Beauty and the Beast, in which she voiced the film''s heroine, Belle. Following
    the critical and commercial success of Beauty and the Beast, O''Hara reprised
    her role as Belle in the film''s two direct-to-video follow-ups, Beauty and the
    Beast: The Enchanted Christmas and Belle''s Magical World.'
  - M. Shadows Matthew Charles Sanders (born July 31, 1981), better known as M. Shadows,
    is an American singer, songwriter, and musician. He is best known as the lead
    vocalist, songwriter, and a founding member of the American heavy metal band Avenged
    Sevenfold. In 2017, he was voted 3rd in the list of Top 25 Greatest Modern Frontmen
    by Ultimate Guitar.[1]
  - Theresa Donovan In July 2013, Jeannie returns to Salem, this time going by her
    middle name, Theresa. Initially, she strikes up a connection with resident bad
    boy JJ Deveraux (Casey Moss) while trying to secure some pot.[28] During a confrontation
    with JJ and his mother Jennifer Horton (Melissa Reeves) in her office, her aunt
    Kayla confirms that Theresa is in fact Jeannie and that Jen promised to hire her
    as her assistant, a promise she reluctantly agrees to. Kayla reminds Theresa it
    is her last chance at a fresh start.[29] Theresa also strikes up a bad first impression
    with Jennifer's daughter Abigail Deveraux (Kate Mansi) when Abigail smells pot
    on Theresa in her mother's office.[30] To continue to battle against Jennifer,
    she teams up with Anne Milbauer (Meredith Scott Lynn) in hopes of exacting her
    perfect revenge. In a ploy, Theresa reveals her intentions to hopefully woo Dr.
    Daniel Jonas (Shawn Christian). After sleeping with JJ, Theresa overdoses on marijuana
    and GHB. Upon hearing of their daughter's overdose and continuing problems, Shane
    and Kimberly return to town in the hopes of handling their daughter's problem,
    together. After believing that Theresa has a handle on her addictions, Shane and
    Kimberly leave town together. Theresa then teams up with hospital co-worker Anne
    Milbauer (Meredith Scott Lynn) to conspire against Jennifer, using Daniel as a
    way to hurt their relationship. In early 2014, following a Narcotics Anonymous
    (NA) meeting, she begins a sexual and drugged-fused relationship with Brady Black
    (Eric Martsolf). In 2015, after it is found that Kristen DiMera (Eileen Davidson)
    stole Theresa's embryo and carried it to term, Brady and Melanie Jonas return
    her son, Christopher, to her and Brady, and the pair rename him Tate. When Theresa
    moves into the Kiriakis mansion, tensions arise between her and Victor. She eventually
    expresses her interest in purchasing Basic Black and running it as her own fashion
    company, with financial backing from Maggie Horton (Suzanne Rogers). In the hopes
    of finding the right partner, she teams up with Kate Roberts (Lauren Koslow) and
    Nicole Walker (Arianne Zucker) to achieve the goal of purchasing Basic Black,
    with Kate and Nicole's business background and her own interest in fashion design.
    As she and Brady share several instances of rekindling their romance, she is kicked
    out of the mansion by Victor; as a result, Brady quits Titan and moves in with
    Theresa and Tate, in their own penthouse.
- source_sentence: where does the last name francisco come from
  sentences:
  - Francisco Francisco is the Spanish and Portuguese form of the masculine given
    name Franciscus (corresponding to English Francis).
  - 'Book of Esther The Book of Esther, also known in Hebrew as "the Scroll" (Megillah),
    is a book in the third section (Ketuvim, "Writings") of the Jewish Tanakh (the
    Hebrew Bible) and in the Christian Old Testament. It is one of the five Scrolls
    (Megillot) in the Hebrew Bible. It relates the story of a Hebrew woman in Persia,
    born as Hadassah but known as Esther, who becomes queen of Persia and thwarts
    a genocide of her people. The story forms the core of the Jewish festival of Purim,
    during which it is read aloud twice: once in the evening and again the following
    morning. The books of Esther and Song of Songs are the only books in the Hebrew
    Bible that do not explicitly mention God.[2]'
  - Times Square Times Square is a major commercial intersection, tourist destination,
    entertainment center and neighborhood in the Midtown Manhattan section of New
    York City at the junction of Broadway and Seventh Avenue. It stretches from West
    42nd to West 47th Streets.[1] Brightly adorned with billboards and advertisements,
    Times Square is sometimes referred to as "The Crossroads of the World",[2] "The
    Center of the Universe",[3] "the heart of The Great White Way",[4][5][6] and the
    "heart of the world".[7] One of the world's busiest pedestrian areas,[8] it is
    also the hub of the Broadway Theater District[9] and a major center of the world's
    entertainment industry.[10] Times Square is one of the world's most visited tourist
    attractions, drawing an estimated 50 million visitors annually.[11] Approximately
    330,000 people pass through Times Square daily,[12] many of them tourists,[13]
    while over 460,000 pedestrians walk through Times Square on its busiest days.[7]
datasets:
- sentence-transformers/natural-questions
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
co2_eq_emissions:
  emissions: 156.71745272849893
  energy_consumed: 0.4031814930936783
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 1.06
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: MPNet base trained on Natural Questions pairs
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoClimateFEVER
      type: NanoClimateFEVER
    metrics:
    - type: cosine_accuracy@1
      value: 0.26
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.44
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.58
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.74
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.26
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.16666666666666663
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.132
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.098
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.12166666666666666
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.21333333333333335
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.2823333333333333
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4023333333333333
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3072612507335402
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3923333333333332
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.23491428459601352
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoDBPedia
      type: NanoDBPedia
    metrics:
    - type: cosine_accuracy@1
      value: 0.54
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.82
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.88
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.92
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.54
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.49333333333333335
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.452
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.3999999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.03532870005653879
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.12890082733478095
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.171758495529932
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.27990780793487774
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4786923942173648
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6884999999999999
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.33505815936311906
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoFEVER
      type: NanoFEVER
    metrics:
    - type: cosine_accuracy@1
      value: 0.52
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.78
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.88
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.52
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.092
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.51
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.68
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.75
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.85
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6729158648959721
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6254444444444444
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.614761203653674
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoFiQA2018
      type: NanoFiQA2018
    metrics:
    - type: cosine_accuracy@1
      value: 0.3
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.44
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.58
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.64
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18666666666666665
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09399999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.15083333333333335
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.25576984126984126
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.36776984126984125
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4388253968253968
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3428344529352367
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4101904761904761
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2860017356440821
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoHotpotQA
      type: NanoHotpotQA
    metrics:
    - type: cosine_accuracy@1
      value: 0.56
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.66
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.68
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.72
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.56
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2866666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.192
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.102
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.28
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.43
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.48
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.51
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.488503807443355
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6108333333333333
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.43846940314913296
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: cosine_accuracy@1
      value: 0.32
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.56
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.68
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.74
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.32
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18666666666666668
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.136
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07400000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.32
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.56
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.68
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.74
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.529224155417674
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4613571428571428
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.47267860121474675
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: cosine_accuracy@1
      value: 0.3
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.44
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.46
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.56
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.256
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.206
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.011477084598176458
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.028676292172329844
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.040358577465214304
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.05875427093456358
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.22959434028697892
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3806031746031746
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.07498220009340267
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: cosine_accuracy@1
      value: 0.4
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.56
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.68
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.78
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14400000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08199999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.38
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.55
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.65
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.74
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.559757518165897
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5117460317460317
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5051110779754859
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoQuoraRetrieval
      type: NanoQuoraRetrieval
    metrics:
    - type: cosine_accuracy@1
      value: 0.84
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.92
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.94
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.98
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.84
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.37999999999999995
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.23999999999999996
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.13199999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7406666666666666
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8786666666666667
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9093333333333333
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.97
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9011957626416093
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8868571428571428
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8761171188288835
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoSCIDOCS
      type: NanoSCIDOCS
    metrics:
    - type: cosine_accuracy@1
      value: 0.4
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.54
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.64
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.76
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.24000000000000005
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.17600000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.08366666666666667
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.17366666666666664
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.2476666666666667
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.3636666666666667
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3399485562655788
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5016269841269841
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2597766712058288
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoArguAna
      type: NanoArguAna
    metrics:
    - type: cosine_accuracy@1
      value: 0.22
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.62
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.86
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.94
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.22
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.20666666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.172
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09399999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.22
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.62
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.86
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.94
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5736165548748362
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.45563492063492056
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.45858965011596586
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoSciFact
      type: NanoSciFact
    metrics:
    - type: cosine_accuracy@1
      value: 0.44
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.66
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.68
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.74
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.44
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14400000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.084
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.405
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.63
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.65
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.73
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5809087660276336
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5428571428571428
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5343620568329766
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoTouche2020
      type: NanoTouche2020
    metrics:
    - type: cosine_accuracy@1
      value: 0.5714285714285714
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8571428571428571
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9183673469387755
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9795918367346939
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5714285714285714
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.5306122448979591
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.5183673469387755
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.4163265306122449
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.04042531470555883
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.11796663614343775
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.18934738259789605
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.28088647761316804
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4716177209745631
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7203109815354714
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.36609464219543497
      name: Cosine Map@100
  - task:
      type: nano-beir
      name: Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: cosine_accuracy@1
      value: 0.43626373626373627
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.632087912087912
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7198744113029828
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7984301412872841
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.43626373626373627
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28235478806907377
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.22664364207221352
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.15771742543171113
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.25377418713027755
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4051523279682351
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.48296674078432444
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5618749194852313
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4981593188369415
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5529457775784306
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.41976283114374974
      name: Cosine Map@100
---

# MPNet base trained on Natural Questions pairs

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

This model was trained using the script from the [Training with Prompts](https://sbert.net/examples/training/prompts/README.html) Sentence Transformers documentation.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/mpnet-base-nq")
# Run inference
sentences = [
    'where does the last name francisco come from',
    'Francisco Francisco is the Spanish and Portuguese form of the masculine given name Franciscus (corresponding to English Francis).',
    'Book of Esther The Book of Esther, also known in Hebrew as "the Scroll" (Megillah), is a book in the third section (Ketuvim, "Writings") of the Jewish Tanakh (the Hebrew Bible) and in the Christian Old Testament. It is one of the five Scrolls (Megillot) in the Hebrew Bible. It relates the story of a Hebrew woman in Persia, born as Hadassah but known as Esther, who becomes queen of Persia and thwarts a genocide of her people. The story forms the core of the Jewish festival of Purim, during which it is read aloud twice: once in the evening and again the following morning. The books of Esther and Song of Songs are the only books in the Hebrew Bible that do not explicitly mention God.[2]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | NanoClimateFEVER | NanoDBPedia | NanoFEVER  | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ     | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
| cosine_accuracy@1   | 0.26             | 0.54        | 0.52       | 0.3          | 0.56         | 0.32        | 0.3          | 0.4        | 0.84               | 0.4         | 0.22        | 0.44        | 0.5714         |
| cosine_accuracy@3   | 0.44             | 0.82        | 0.7        | 0.44         | 0.66         | 0.56        | 0.44         | 0.56       | 0.92               | 0.54        | 0.62        | 0.66        | 0.8571         |
| cosine_accuracy@5   | 0.58             | 0.88        | 0.78       | 0.58         | 0.68         | 0.68        | 0.46         | 0.68       | 0.94               | 0.64        | 0.86        | 0.68        | 0.9184         |
| cosine_accuracy@10  | 0.74             | 0.92        | 0.88       | 0.64         | 0.72         | 0.74        | 0.56         | 0.78       | 0.98               | 0.76        | 0.94        | 0.74        | 0.9796         |
| cosine_precision@1  | 0.26             | 0.54        | 0.52       | 0.3          | 0.56         | 0.32        | 0.3          | 0.4        | 0.84               | 0.4         | 0.22        | 0.44        | 0.5714         |
| cosine_precision@3  | 0.1667           | 0.4933      | 0.24       | 0.1867       | 0.2867       | 0.1867      | 0.28         | 0.2        | 0.38               | 0.28        | 0.2067      | 0.2333      | 0.5306         |
| cosine_precision@5  | 0.132            | 0.452       | 0.16       | 0.16         | 0.192        | 0.136       | 0.256        | 0.144      | 0.24               | 0.24        | 0.172       | 0.144       | 0.5184         |
| cosine_precision@10 | 0.098            | 0.4         | 0.092      | 0.094        | 0.102        | 0.074       | 0.206        | 0.082      | 0.132              | 0.176       | 0.094       | 0.084       | 0.4163         |
| cosine_recall@1     | 0.1217           | 0.0353      | 0.51       | 0.1508       | 0.28         | 0.32        | 0.0115       | 0.38       | 0.7407             | 0.0837      | 0.22        | 0.405       | 0.0404         |
| cosine_recall@3     | 0.2133           | 0.1289      | 0.68       | 0.2558       | 0.43         | 0.56        | 0.0287       | 0.55       | 0.8787             | 0.1737      | 0.62        | 0.63        | 0.118          |
| cosine_recall@5     | 0.2823           | 0.1718      | 0.75       | 0.3678       | 0.48         | 0.68        | 0.0404       | 0.65       | 0.9093             | 0.2477      | 0.86        | 0.65        | 0.1893         |
| cosine_recall@10    | 0.4023           | 0.2799      | 0.85       | 0.4388       | 0.51         | 0.74        | 0.0588       | 0.74       | 0.97               | 0.3637      | 0.94        | 0.73        | 0.2809         |
| **cosine_ndcg@10**  | **0.3073**       | **0.4787**  | **0.6729** | **0.3428**   | **0.4885**   | **0.5292**  | **0.2296**   | **0.5598** | **0.9012**         | **0.3399**  | **0.5736**  | **0.5809**  | **0.4716**     |
| cosine_mrr@10       | 0.3923           | 0.6885      | 0.6254     | 0.4102       | 0.6108       | 0.4614      | 0.3806       | 0.5117     | 0.8869             | 0.5016      | 0.4556      | 0.5429      | 0.7203         |
| cosine_map@100      | 0.2349           | 0.3351      | 0.6148     | 0.286        | 0.4385       | 0.4727      | 0.075        | 0.5051     | 0.8761             | 0.2598      | 0.4586      | 0.5344      | 0.3661         |

#### Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4363     |
| cosine_accuracy@3   | 0.6321     |
| cosine_accuracy@5   | 0.7199     |
| cosine_accuracy@10  | 0.7984     |
| cosine_precision@1  | 0.4363     |
| cosine_precision@3  | 0.2824     |
| cosine_precision@5  | 0.2266     |
| cosine_precision@10 | 0.1577     |
| cosine_recall@1     | 0.2538     |
| cosine_recall@3     | 0.4052     |
| cosine_recall@5     | 0.483      |
| cosine_recall@10    | 0.5619     |
| **cosine_ndcg@10**  | **0.4982** |
| cosine_mrr@10       | 0.5529     |
| cosine_map@100      | 0.4198     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### natural-questions

* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 100,231 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                              | answer                                                                              |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.74 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 137.2 tokens</li><li>max: 508 tokens</li></ul> |
* Samples:
  | query                                                                   | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  |:------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>who is required to report according to the hmda</code>            | <code>Home Mortgage Disclosure Act US financial institutions must report HMDA data to their regulator if they meet certain criteria, such as having assets above a specific threshold. The criteria is different for depository and non-depository institutions and are available on the FFIEC website.[4] In 2012, there were 7,400 institutions that reported a total of 18.7 million HMDA records.[5]</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  | <code>what is the definition of endoplasmic reticulum in biology</code> | <code>Endoplasmic reticulum The endoplasmic reticulum (ER) is a type of organelle in eukaryotic cells that forms an interconnected network of flattened, membrane-enclosed sacs or tube-like structures known as cisternae. The membranes of the ER are continuous with the outer nuclear membrane. The endoplasmic reticulum occurs in most types of eukaryotic cells, but is absent from red blood cells and spermatozoa. There are two types of endoplasmic reticulum: rough and smooth. The outer (cytosolic) face of the rough endoplasmic reticulum is studded with ribosomes that are the sites of protein synthesis. The rough endoplasmic reticulum is especially prominent in cells such as hepatocytes. The smooth endoplasmic reticulum lacks ribosomes and functions in lipid manufacture and metabolism, the production of steroid hormones, and detoxification.[1] The smooth ER is especially abundant in mammalian liver and gonad cells. The lacy membranes of the endoplasmic reticulum were first seen in 1945 using elect...</code> |
  | <code>what does the ski mean in polish names</code>                     | <code>Polish name Since the High Middle Ages, Polish-sounding surnames ending with the masculine -ski suffix, including -cki and -dzki, and the corresponding feminine suffix -ska/-cka/-dzka were associated with the nobility (Polish szlachta), which alone, in the early years, had such suffix distinctions.[1] They are widely popular today.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### natural-questions

* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 100,231 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                              | answer                                                                               |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.78 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 135.64 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | query                                                             | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
  |:------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>difference between russian blue and british blue cat</code> | <code>Russian Blue The coat is known as a "double coat", with the undercoat being soft, downy and equal in length to the guard hairs, which are an even blue with silver tips. However, the tail may have a few very dull, almost unnoticeable stripes. The coat is described as thick, plush and soft to the touch. The feeling is softer than the softest silk. The silver tips give the coat a shimmering appearance. Its eyes are almost always a dark and vivid green. Any white patches of fur or yellow eyes in adulthood are seen as flaws in show cats.[3] Russian Blues should not be confused with British Blues (which are not a distinct breed, but rather a British Shorthair with a blue coat as the British Shorthair breed itself comes in a wide variety of colors and patterns), nor the Chartreux or Korat which are two other naturally occurring breeds of blue cats, although they have similar traits.</code> |
  | <code>who played the little girl on mrs doubtfire</code>          | <code>Mara Wilson Mara Elizabeth Wilson[2] (born July 24, 1987) is an American writer and former child actress. She is known for playing Natalie Hillard in Mrs. Doubtfire (1993), Susan Walker in Miracle on 34th Street (1994), Matilda Wormwood in Matilda (1996) and Lily Stone in Thomas and the Magic Railroad (2000). Since retiring from film acting, Wilson has focused on writing.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  | <code>what year did the movie the sound of music come out</code>  | <code>The Sound of Music (film) The film was released on March 2, 1965 in the United States, initially as a limited roadshow theatrical release. Although critical response to the film was widely mixed, the film was a major commercial success, becoming the number one box office movie after four weeks, and the highest-grossing film of 1965. By November 1966, The Sound of Music had become the highest-grossing film of all-time—surpassing Gone with the Wind—and held that distinction for five years. The film was just as popular throughout the world, breaking previous box-office records in twenty-nine countries. Following an initial theatrical release that lasted four and a half years, and two successful re-releases, the film sold 283 million admissions worldwide and earned a total worldwide gross of $286,000,000.</code>                                                                             |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:|
| 0      | 0    | -             | -               | 0.0419                          | 0.1123                     | 0.0389                   | 0.0309                      | 0.0746                      | 0.1310                     | 0.0311                      | 0.0397                | 0.6607                            | 0.0638                     | 0.2616                     | 0.1097                     | 0.1098                        | 0.1312                       |
| 0.0026 | 1    | 4.9565        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |
| 0.1289 | 50   | 2.0541        | 0.2601          | 0.2710                          | 0.4448                     | 0.6531                   | 0.3607                      | 0.4391                      | 0.4775                     | 0.2046                      | 0.4423                | 0.8485                            | 0.3347                     | 0.5148                     | 0.5010                     | 0.4544                        | 0.4574                       |
| 0.2577 | 100  | 0.2154        | 0.1422          | 0.2920                          | 0.4577                     | 0.6635                   | 0.3671                      | 0.4623                      | 0.5067                     | 0.2115                      | 0.5170                | 0.8845                            | 0.3360                     | 0.5483                     | 0.5044                     | 0.4627                        | 0.4780                       |
| 0.3866 | 150  | 0.1503        | 0.1182          | 0.3064                          | 0.4665                     | 0.6658                   | 0.3511                      | 0.4935                      | 0.5324                     | 0.2347                      | 0.5320                | 0.8982                            | 0.3316                     | 0.5674                     | 0.5495                     | 0.4583                        | 0.4913                       |
| 0.5155 | 200  | 0.1325        | 0.1075          | 0.3205                          | 0.4777                     | 0.6608                   | 0.3588                      | 0.4938                      | 0.5221                     | 0.2285                      | 0.5568                | 0.9064                            | 0.3321                     | 0.5566                     | 0.5510                     | 0.4693                        | 0.4950                       |
| 0.6443 | 250  | 0.142         | 0.1040          | 0.3326                          | 0.4721                     | 0.6589                   | 0.3671                      | 0.4875                      | 0.5207                     | 0.2392                      | 0.5511                | 0.9025                            | 0.3336                     | 0.5637                     | 0.5861                     | 0.4738                        | 0.4991                       |
| 0.7732 | 300  | 0.1243        | 0.0989          | 0.3078                          | 0.4699                     | 0.6560                   | 0.3493                      | 0.4946                      | 0.5268                     | 0.2275                      | 0.5422                | 0.9071                            | 0.3375                     | 0.5664                     | 0.5850                     | 0.4709                        | 0.4955                       |
| 0.9021 | 350  | 0.1161        | 0.0960          | 0.3092                          | 0.4781                     | 0.6734                   | 0.3426                      | 0.4971                      | 0.5218                     | 0.2294                      | 0.5608                | 0.9012                            | 0.3444                     | 0.5742                     | 0.5818                     | 0.4672                        | 0.4986                       |
| 1.0    | 388  | -             | -               | 0.3073                          | 0.4787                     | 0.6729                   | 0.3428                      | 0.4885                      | 0.5292                     | 0.2296                      | 0.5598                | 0.9012                            | 0.3399                     | 0.5736                     | 0.5809                     | 0.4716                        | 0.4982                       |


### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.403 kWh
- **Carbon Emitted**: 0.157 kg of CO2
- **Hours Used**: 1.06 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.3.0.dev0
- Transformers: 4.45.2
- PyTorch: 2.5.0+cu121
- Accelerate: 1.0.0
- Datasets: 2.20.0
- Tokenizers: 0.20.1-dev.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CachedMultipleNegativesRankingLoss
```bibtex
@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->