File size: 57,793 Bytes
60d0fcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3012496
- loss:MatryoshkaLoss
- loss:CachedMultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
widget:
- source_sentence: how to sign legal documents as power of attorney?
  sentences:
  - 'After the principal''s name, write “by” and then sign your own name. Under or

    after the signature line, indicate your status as POA by including any of the

    following identifiers: as POA, as Agent, as Attorney in Fact or as Power of Attorney.'
  - '[''From the Home screen, swipe left to Apps.'', ''Tap Transfer my Data.'', ''Tap

    Menu (...).'', ''Tap Export to SD card.'']'
  - Ginger Dank Nugs (Grape) - 350mg. Feast your eyes on these unique and striking
    gourmet chocolates; Coco Nugs created by Ginger Dank. Crafted to resemble perfect
    nugs of cannabis, each of the 10 buds contains 35mg of THC. ... This is a perfect
    product for both cannabis and chocolate lovers, who appreciate a little twist.
- source_sentence: how to delete vdom in fortigate?
  sentences:
  - Go to System -> VDOM -> VDOM2 and select 'Delete'. This VDOM is now successfully
    removed from the configuration.
  - 'Both combination birth control pills and progestin-only pills may cause headaches

    as a side effect. Additional side effects of birth control pills may include:

    breast tenderness. nausea.'
  - White cheese tends to show imperfections more readily and as consumers got more
    used to yellow-orange cheese, it became an expected option. Today, many cheddars
    are yellow. While most cheesemakers use annatto, some use an artificial coloring
    agent instead, according to Sachs.
- source_sentence: where are earthquakes most likely to occur on earth?
  sentences:
  - Zelle in the Bank of the America app is a fast, safe, and easy way to send and
    receive money with family and friends who have a bank account in the U.S., all
    with no fees. Money moves in minutes directly between accounts that are already
    enrolled with Zelle.
  - It takes about 3 days for a spacecraft to reach the Moon. During that time a spacecraft
    travels at least 240,000 miles (386,400 kilometers) which is the distance between
    Earth and the Moon.
  - Most earthquakes occur along the edge of the oceanic and continental plates. The
    earth's crust (the outer layer of the planet) is made up of several pieces, called
    plates. The plates under the oceans are called oceanic plates and the rest are
    continental plates.
- source_sentence: fix iphone is disabled connect to itunes without itunes?
  sentences:
  - To fix a disabled iPhone or iPad without iTunes, you have to erase your device.
    Click on the "Erase iPhone" option and confirm your selection. Wait for a while
    as the "Find My iPhone" feature will remotely erase your iOS device. Needless
    to say, it will also disable its lock.
  - How Māui brought fire to the world. One evening, after eating a hearty meal, Māui
    lay beside his fire staring into the flames. ... In the middle of the night, while
    everyone was sleeping, Māui went from village to village and extinguished all
    the fires until not a single fire burned in the world.
  - Angry Orchard makes a variety of year-round craft cider styles, including Angry
    Orchard Crisp Apple, a fruit-forward hard cider that balances the sweetness of
    culinary apples with dryness and bright acidity of bittersweet apples for a complex,
    refreshing taste.
- source_sentence: how to reverse a video on tiktok that's not yours?
  sentences:
  - '[''Tap "Effects" at the bottom of your screen — it\''s an icon that looks like
    a clock. Open the Effects menu. ... '', ''At the end of the new list that appears,
    tap "Time." Select "Time" at the end. ... '', ''Select "Reverse"  you\''ll then
    see a preview of your new, reversed video appear on the screen.'']'
  - Franchise Facts Poke Bar has a franchise fee of up to $30,000, with a total initial
    investment range of $157,800 to $438,000. The initial cost of a franchise includes
    several fees -- Unlock this franchise to better understand the costs such as training
    and territory fees.
  - Relative age is the age of a rock layer (or the fossils it contains) compared
    to other layers. It can be determined by looking at the position of rock layers.
    Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can
    be determined by using radiometric dating.
datasets:
- sentence-transformers/gooaq
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
co2_eq_emissions:
  emissions: 901.0176370050929
  energy_consumed: 2.3180164676412596
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 5.999
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: MPNet base trained on GooAQ triplets
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoClimateFEVER
      type: NanoClimateFEVER
    metrics:
    - type: cosine_accuracy@1
      value: 0.26
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.46
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.62
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.26
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1733333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11600000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08199999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.12833333333333333
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.23566666666666664
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.2523333333333333
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.3423333333333333
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2832168283343785
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3685714285714285
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.22816684702715823
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoDBPedia
      type: NanoDBPedia
    metrics:
    - type: cosine_accuracy@1
      value: 0.56
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.78
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.82
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.88
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.56
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.5
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.436
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.37800000000000006
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.05411706752798353
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.12035295895525228
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.15928246254162917
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.23697530489351543
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4605652479922868
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6701666666666667
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.313461519912651
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoFEVER
      type: NanoFEVER
    metrics:
    - type: cosine_accuracy@1
      value: 0.62
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.82
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.84
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.62
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27999999999999997
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.172
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.092
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5766666666666667
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7866666666666667
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8066666666666668
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8666666666666667
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7421816204572005
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7256349206349206
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6984857882513162
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoFiQA2018
      type: NanoFiQA2018
    metrics:
    - type: cosine_accuracy@1
      value: 0.4
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.52
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.68
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.188
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.11199999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.24385714285714286
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.37612698412698414
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.429515873015873
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5025952380952381
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.43956943866243664
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.48483333333333334
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.39610909278538586
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoHotpotQA
      type: NanoHotpotQA
    metrics:
    - type: cosine_accuracy@1
      value: 0.6
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.72
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.78
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.84
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.31999999999999995
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.204
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.11799999999999997
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.48
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.51
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.59
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5463522282651155
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6749126984126984
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4777656892588857
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: cosine_accuracy@1
      value: 0.26
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.54
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.82
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.26
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08199999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.26
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.54
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.82
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5254388867327386
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.43241269841269836
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.44192370495002076
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: cosine_accuracy@1
      value: 0.42
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.52
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.54
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.64
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.42
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3533333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.29600000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.22999999999999995
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.024846889440892198
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.050109275117862714
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.06353201637623539
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.08853093525637233
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2784279013606366
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.48200000000000004
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.1099281411687893
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: cosine_accuracy@1
      value: 0.46
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.64
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.68
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.46
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.22666666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14400000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08399999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.44
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.63
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.67
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.76
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6103091812374759
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5662380952380953
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5687228298733515
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoQuoraRetrieval
      type: NanoQuoraRetrieval
    metrics:
    - type: cosine_accuracy@1
      value: 0.92
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.98
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.98
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.92
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.40666666666666657
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.25599999999999995
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.13399999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7973333333333332
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9453333333333334
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9593333333333334
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9893333333333334
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9468303023215506
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.948888888888889
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9245031746031745
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoSCIDOCS
      type: NanoSCIDOCS
    metrics:
    - type: cosine_accuracy@1
      value: 0.34
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.54
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.64
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.76
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.34
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.21600000000000003
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.148
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.07
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.16
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.22266666666666668
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.3046666666666667
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.29180682575954126
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4679126984126984
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.20981154821773768
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoArguAna
      type: NanoArguAna
    metrics:
    - type: cosine_accuracy@1
      value: 0.24
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.68
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.82
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.24
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.16666666666666663
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.136
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08199999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.24
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.68
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.82
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5108280876289467
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.413579365079365
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.42352200577200577
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoSciFact
      type: NanoSciFact
    metrics:
    - type: cosine_accuracy@1
      value: 0.52
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.64
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.72
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.74
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.52
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.22666666666666668
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08399999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.485
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.61
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.705
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.73
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6181538011380482
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5913333333333333
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5833669046006453
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoTouche2020
      type: NanoTouche2020
    metrics:
    - type: cosine_accuracy@1
      value: 0.5102040816326531
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8163265306122449
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8571428571428571
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9795918367346939
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5102040816326531
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.510204081632653
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.47346938775510194
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.41020408163265304
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.03893285013079613
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.11588553532033441
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.17562928121209787
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.2858043118244373
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4588632608031716
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6822238419177193
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.36126308261178003
      name: Cosine Map@100
  - task:
      type: nano-beir
      name: Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: cosine_accuracy@1
      value: 0.47001569858712716
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6520251177394034
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7182417582417582
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8061224489795917
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.47001569858712716
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2971951857666143
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.2259591836734694
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.15663108320251176
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.2814682525607806
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4269339553990077
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.48722766408814117
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5643773684668895
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5163495085148867
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5775929206847574
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4413100253102233
      name: Cosine Map@100
---


# MPNet base trained on GooAQ triplets

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("tomaarsen/mpnet-base-gooaq-cmnrl-mrl")

# Run inference

sentences = [

    "how to reverse a video on tiktok that's not yours?",

    '[\'Tap "Effects" at the bottom of your screen — it\\\'s an icon that looks like a clock. Open the Effects menu. ... \', \'At the end of the new list that appears, tap "Time." Select "Time" at the end. ... \', \'Select "Reverse" — you\\\'ll then see a preview of your new, reversed video appear on the screen.\']',

    'Relative age is the age of a rock layer (or the fossils it contains) compared to other layers. It can be determined by looking at the position of rock layers. Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can be determined by using radiometric dating.',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | NanoClimateFEVER | NanoDBPedia | NanoFEVER  | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ     | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
| cosine_accuracy@1   | 0.26             | 0.56        | 0.62       | 0.4          | 0.6          | 0.26        | 0.42         | 0.46       | 0.92               | 0.34        | 0.24        | 0.52        | 0.5102         |

| cosine_accuracy@3   | 0.46             | 0.78        | 0.82       | 0.52         | 0.72         | 0.54        | 0.52         | 0.64       | 0.98               | 0.54        | 0.5         | 0.64        | 0.8163         |
| cosine_accuracy@5   | 0.5              | 0.82        | 0.84       | 0.6          | 0.78         | 0.7         | 0.54         | 0.68       | 0.98               | 0.64        | 0.68        | 0.72        | 0.8571         |

| cosine_accuracy@10  | 0.62             | 0.88        | 0.9        | 0.68         | 0.84         | 0.82        | 0.64         | 0.8        | 1.0                | 0.76        | 0.82        | 0.74        | 0.9796         |
| cosine_precision@1  | 0.26             | 0.56        | 0.62       | 0.4          | 0.6          | 0.26        | 0.42         | 0.46       | 0.92               | 0.34        | 0.24        | 0.52        | 0.5102         |

| cosine_precision@3  | 0.1733           | 0.5         | 0.28       | 0.26         | 0.32         | 0.18        | 0.3533       | 0.2267     | 0.4067             | 0.26        | 0.1667      | 0.2267      | 0.5102         |
| cosine_precision@5  | 0.116            | 0.436       | 0.172      | 0.188        | 0.204        | 0.14        | 0.296        | 0.144      | 0.256              | 0.216       | 0.136       | 0.16        | 0.4735         |

| cosine_precision@10 | 0.082            | 0.378       | 0.092      | 0.112        | 0.118        | 0.082       | 0.23         | 0.084      | 0.134              | 0.148       | 0.082       | 0.084       | 0.4102         |
| cosine_recall@1     | 0.1283           | 0.0541      | 0.5767     | 0.2439       | 0.3          | 0.26        | 0.0248       | 0.44       | 0.7973             | 0.07        | 0.24        | 0.485       | 0.0389         |

| cosine_recall@3     | 0.2357           | 0.1204      | 0.7867     | 0.3761       | 0.48         | 0.54        | 0.0501       | 0.63       | 0.9453             | 0.16        | 0.5         | 0.61        | 0.1159         |
| cosine_recall@5     | 0.2523           | 0.1593      | 0.8067     | 0.4295       | 0.51         | 0.7         | 0.0635       | 0.67       | 0.9593             | 0.2227      | 0.68        | 0.705       | 0.1756         |

| cosine_recall@10    | 0.3423           | 0.237       | 0.8667     | 0.5026       | 0.59         | 0.82        | 0.0885       | 0.76       | 0.9893             | 0.3047      | 0.82        | 0.73        | 0.2858         |
| **cosine_ndcg@10**  | **0.2832**       | **0.4606**  | **0.7422** | **0.4396**   | **0.5464**   | **0.5254**  | **0.2784**   | **0.6103** | **0.9468**         | **0.2918**  | **0.5108**  | **0.6182**  | **0.4589**     |

| cosine_mrr@10       | 0.3686           | 0.6702      | 0.7256     | 0.4848       | 0.6749       | 0.4324      | 0.482        | 0.5662     | 0.9489             | 0.4679      | 0.4136      | 0.5913      | 0.6822         |

| cosine_map@100      | 0.2282           | 0.3135      | 0.6985     | 0.3961       | 0.4778       | 0.4419      | 0.1099       | 0.5687     | 0.9245             | 0.2098      | 0.4235      | 0.5834      | 0.3613         |



#### Nano BEIR



* Dataset: `NanoBEIR_mean`

* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)



| Metric              | Value      |

|:--------------------|:-----------|

| cosine_accuracy@1   | 0.47       |

| cosine_accuracy@3   | 0.652      |

| cosine_accuracy@5   | 0.7182     |

| cosine_accuracy@10  | 0.8061     |

| cosine_precision@1  | 0.47       |

| cosine_precision@3  | 0.2972     |

| cosine_precision@5  | 0.226      |

| cosine_precision@10 | 0.1566     |

| cosine_recall@1     | 0.2815     |

| cosine_recall@3     | 0.4269     |

| cosine_recall@5     | 0.4872     |

| cosine_recall@10    | 0.5644     |

| **cosine_ndcg@10**  | **0.5163** |

| cosine_mrr@10       | 0.5776     |
| cosine_map@100      | 0.4413     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### gooaq



* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)

* Size: 3,012,496 training samples

* Columns: <code>question</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | question                                                                          | answer                                                                              |

  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                              |

  | details | <ul><li>min: 8 tokens</li><li>mean: 11.86 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.48 tokens</li><li>max: 138 tokens</li></ul> |

* Samples:

  | question                                                                           | answer                                                                                                                                                                                                                                                                                                                |

  |:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>what is the difference between broilers and layers?</code>                   | <code>An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.</code>                |

  | <code>what is the difference between chronological order and spatial order?</code> | <code>As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.</code> |

  | <code>is kamagra same as viagra?</code>                                            | <code>Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.</code>                               |

* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:

  ```json

  {

      "loss": "CachedMultipleNegativesRankingLoss",

      "matryoshka_dims": [
          768,

          512,

          256,

          128,

          64,

          32

      ],

      "matryoshka_weights": [

          1,

          1,

          1,

          1,

          1,

          1

      ],

      "n_dims_per_step": -1

  }

  ```


### Evaluation Dataset

#### gooaq

* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,012,496 evaluation samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | answer                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.88 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 61.03 tokens</li><li>max: 127 tokens</li></ul> |
* Samples:
  | question                                                                     | answer                                                                                                                                                                                                                                                                                                                                     |
  |:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>how do i program my directv remote with my tv?</code>                  | <code>['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']</code>                                                                                               |
  | <code>are rodrigues fruit bats nocturnal?</code>                             | <code>Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.</code>                                                                                                  |
  | <code>why does your heart rate increase during exercise bbc bitesize?</code> | <code>During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json

  {

      "loss": "CachedMultipleNegativesRankingLoss",

      "matryoshka_dims": [

          768,

          512,

          256,

          128,

          64,

          32

      ],

      "matryoshka_weights": [

          1,

          1,

          1,

          1,

          1,

          1

      ],

      "n_dims_per_step": -1

  }

  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 2048
- `learning_rate`: 8e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 2048
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 8e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |

|:------:|:----:|:-------------:|:---------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:|

| 0      | 0    | -             | -               | 0.0419                          | 0.1123                     | 0.0389                   | 0.0309                      | 0.0746                      | 0.1310                     | 0.0311                      | 0.0397                | 0.6607                            | 0.0638                     | 0.2616                     | 0.1097                     | 0.1098                        | 0.1312                       |

| 0.0007 | 1    | 41.9671       | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.0682 | 100  | 12.4237       | 1.0176          | 0.3022                          | 0.4597                     | 0.7934                   | 0.4621                      | 0.5280                      | 0.4849                     | 0.2517                      | 0.5561                | 0.8988                            | 0.3144                     | 0.5708                     | 0.5755                     | 0.4514                        | 0.5115                       |

| 0.1363 | 200  | 3.0536        | 0.6917          | 0.2883                          | 0.4588                     | 0.7773                   | 0.4272                      | 0.5264                      | 0.5494                     | 0.2538                      | 0.5837                | 0.9303                            | 0.2945                     | 0.5493                     | 0.5795                     | 0.4547                        | 0.5133                       |

| 0.2045 | 300  | 2.2724        | 0.5954          | 0.2944                          | 0.4606                     | 0.7825                   | 0.4522                      | 0.5247                      | 0.5069                     | 0.2554                      | 0.5636                | 0.9177                            | 0.2861                     | 0.5560                     | 0.5562                     | 0.4667                        | 0.5095                       |

| 0.2727 | 400  | 1.933         | 0.5171          | 0.3027                          | 0.4841                     | 0.7050                   | 0.4406                      | 0.4877                      | 0.5406                     | 0.2768                      | 0.6014                | 0.9463                            | 0.2989                     | 0.5725                     | 0.6151                     | 0.4680                        | 0.5184                       |

| 0.3408 | 500  | 1.7806        | 0.4745          | 0.3034                          | 0.4857                     | 0.7537                   | 0.4435                      | 0.5661                      | 0.5529                     | 0.2733                      | 0.5878                | 0.9470                            | 0.3016                     | 0.5377                     | 0.6073                     | 0.4682                        | 0.5252                       |

| 0.4090 | 600  | 1.6253        | 0.4392          | 0.3018                          | 0.4790                     | 0.7502                   | 0.4617                      | 0.5478                      | 0.5411                     | 0.2812                      | 0.6220                | 0.9443                            | 0.2916                     | 0.5210                     | 0.5900                     | 0.4644                        | 0.5228                       |

| 0.4772 | 700  | 1.5136        | 0.4312          | 0.3175                          | 0.4846                     | 0.7481                   | 0.4168                      | 0.5761                      | 0.5222                     | 0.2825                      | 0.6142                | 0.9415                            | 0.2888                     | 0.5373                     | 0.5754                     | 0.4675                        | 0.5210                       |

| 0.5453 | 800  | 1.4454        | 0.4022          | 0.3017                          | 0.4756                     | 0.7307                   | 0.4494                      | 0.5484                      | 0.5184                     | 0.2821                      | 0.6182                | 0.9440                            | 0.2834                     | 0.5191                     | 0.6071                     | 0.4694                        | 0.5191                       |

| 0.6135 | 900  | 1.3711        | 0.3886          | 0.2945                          | 0.4602                     | 0.7463                   | 0.4529                      | 0.5433                      | 0.5457                     | 0.2730                      | 0.5972                | 0.9449                            | 0.2776                     | 0.5183                     | 0.6018                     | 0.4716                        | 0.5175                       |

| 0.6817 | 1000 | 1.3295        | 0.3688          | 0.2811                          | 0.4720                     | 0.7275                   | 0.4342                      | 0.5581                      | 0.5418                     | 0.2809                      | 0.6087                | 0.9421                            | 0.2823                     | 0.5138                     | 0.5729                     | 0.4662                        | 0.5140                       |

| 0.7498 | 1100 | 1.267         | 0.3637          | 0.2815                          | 0.4666                     | 0.7168                   | 0.4346                      | 0.5348                      | 0.5317                     | 0.2789                      | 0.6056                | 0.9450                            | 0.2775                     | 0.5117                     | 0.6116                     | 0.4583                        | 0.5119                       |

| 0.8180 | 1200 | 1.2542        | 0.3514          | 0.2882                          | 0.4659                     | 0.7275                   | 0.4308                      | 0.5585                      | 0.5373                     | 0.2788                      | 0.5950                | 0.9433                            | 0.2767                     | 0.5241                     | 0.6141                     | 0.4655                        | 0.5158                       |

| 0.8862 | 1300 | 1.2146        | 0.3427          | 0.2932                          | 0.4638                     | 0.7118                   | 0.4453                      | 0.5636                      | 0.5363                     | 0.2788                      | 0.6098                | 0.9481                            | 0.2825                     | 0.5160                     | 0.6238                     | 0.4619                        | 0.5181                       |

| 0.9543 | 1400 | 1.1892        | 0.3378          | 0.2809                          | 0.4610                     | 0.7319                   | 0.4353                      | 0.5397                      | 0.5295                     | 0.2828                      | 0.6029                | 0.9474                            | 0.2931                     | 0.5078                     | 0.6182                     | 0.4602                        | 0.5147                       |

| 1.0    | 1467 | -             | -               | 0.2832                          | 0.4606                     | 0.7422                   | 0.4396                      | 0.5464                      | 0.5254                     | 0.2784                      | 0.6103                | 0.9468                            | 0.2918                     | 0.5108                     | 0.6182                     | 0.4589                        | 0.5163                       |





### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 2.318 kWh

- **Carbon Emitted**: 0.901 kg of CO2

- **Hours Used**: 5.999 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 3.4.0.dev0

- Transformers: 4.46.2

- PyTorch: 2.5.0+cu121

- Accelerate: 1.1.1

- Datasets: 2.20.0

- Tokenizers: 0.20.3



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MatryoshkaLoss

```bibtex

@misc{kusupati2024matryoshka,

    title={Matryoshka Representation Learning},

    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},

    year={2024},

    eprint={2205.13147},

    archivePrefix={arXiv},

    primaryClass={cs.LG}

}

```



#### CachedMultipleNegativesRankingLoss

```bibtex

@misc{gao2021scaling,

    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},

    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},

    year={2021},

    eprint={2101.06983},

    archivePrefix={arXiv},

    primaryClass={cs.LG}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->