File size: 14,821 Bytes
c14f952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import numbers
import random
import warnings
from dataclasses import asdict, dataclass
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union

import torch
import torchvision.transforms.functional as F
from torchvision.transforms import (
    CenterCrop,
    ColorJitter,
    Compose,
    Grayscale,
    InterpolationMode,
    Normalize,
    RandomResizedCrop,
    Resize,
    ToTensor,
)
from transformers.image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD

OPENAI_DATASET_MEAN = tuple(OPENAI_CLIP_MEAN)
OPENAI_DATASET_STD = tuple(OPENAI_CLIP_STD)


@dataclass
class PreprocessCfg:
    size: Union[int, Tuple[int, int]] = 224
    mode: str = 'RGB'
    mean: Tuple[float, ...] = OPENAI_DATASET_MEAN
    std: Tuple[float, ...] = OPENAI_DATASET_STD
    interpolation: str = 'bicubic'
    resize_mode: str = 'shortest'
    fill_color: int = 0

    def __post_init__(self):
        assert self.mode in ('RGB',)

    @property
    def num_channels(self):
        return 3

    @property
    def input_size(self):
        return (self.num_channels,) + (self.size, self.size)


_PREPROCESS_KEYS = set(asdict(PreprocessCfg()).keys())


def merge_preprocess_dict(
    base: Union[PreprocessCfg, Dict],
    overlay: Dict,
):
    """Merge overlay key-value pairs on top of base preprocess cfg or dict.
    Input dicts are filtered based on PreprocessCfg fields.
    """
    if isinstance(base, PreprocessCfg):
        base_clean = asdict(base)
    else:
        base_clean = {k: v for k, v in base.items() if k in _PREPROCESS_KEYS}
    if overlay:
        overlay_clean = {
            k: v for k, v in overlay.items() if k in _PREPROCESS_KEYS and v is not None
        }
        base_clean.update(overlay_clean)
    return base_clean


def merge_preprocess_kwargs(base: Union[PreprocessCfg, Dict], **kwargs):
    return merge_preprocess_dict(base, kwargs)


@dataclass
class AugmentationCfg:
    scale: Tuple[float, float] = (0.9, 1.0)
    ratio: Optional[Tuple[float, float]] = None
    color_jitter: Optional[
        Union[float, Tuple[float, float, float], Tuple[float, float, float, float]]
    ] = None
    re_prob: Optional[float] = None
    re_count: Optional[int] = None
    use_timm: bool = False

    # params for simclr_jitter_gray
    color_jitter_prob: float = None
    gray_scale_prob: float = None


def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


class ResizeKeepRatio:
    """Resize and Keep Ratio

    Copy & paste from `timm`
    """

    def __init__(
        self,
        size,
        longest=0.0,
        interpolation=InterpolationMode.BICUBIC,
        random_scale_prob=0.0,
        random_scale_range=(0.85, 1.05),
        random_aspect_prob=0.0,
        random_aspect_range=(0.9, 1.11),
    ):
        if isinstance(size, (list, tuple)):
            self.size = tuple(size)
        else:
            self.size = (size, size)
        self.interpolation = interpolation
        self.longest = float(longest)  # [0, 1] where 0 == shortest edge, 1 == longest
        self.random_scale_prob = random_scale_prob
        self.random_scale_range = random_scale_range
        self.random_aspect_prob = random_aspect_prob
        self.random_aspect_range = random_aspect_range

    @staticmethod
    def get_params(
        img,
        target_size,
        longest,
        random_scale_prob=0.0,
        random_scale_range=(0.85, 1.05),
        random_aspect_prob=0.0,
        random_aspect_range=(0.9, 1.11),
    ):
        """Get parameters"""
        source_size = img.size[::-1]  # h, w
        h, w = source_size
        target_h, target_w = target_size
        ratio_h = h / target_h
        ratio_w = w / target_w
        ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (
            1.0 - longest
        )
        if random_scale_prob > 0 and random.random() < random_scale_prob:
            ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1])
            ratio_factor = (ratio_factor, ratio_factor)
        else:
            ratio_factor = (1.0, 1.0)
        if random_aspect_prob > 0 and random.random() < random_aspect_prob:
            aspect_factor = random.uniform(
                random_aspect_range[0], random_aspect_range[1]
            )
            ratio_factor = (
                ratio_factor[0] / aspect_factor,
                ratio_factor[1] * aspect_factor,
            )
        size = [round(x * f / ratio) for x, f in zip(source_size, ratio_factor)]
        return size

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped and resized.

        Returns:
            PIL Image: Resized, padded to at least target size, possibly
            cropped to exactly target size
        """
        size = self.get_params(
            img,
            self.size,
            self.longest,
            self.random_scale_prob,
            self.random_scale_range,
            self.random_aspect_prob,
            self.random_aspect_range,
        )
        img = F.resize(img, size, self.interpolation)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
        format_string += f', interpolation={self.interpolation})'
        format_string += f', longest={self.longest:.3f})'
        return format_string


def center_crop_or_pad(
    img: torch.Tensor, output_size: List[int], fill=0
) -> torch.Tensor:
    """Center crops and/or pads the given image.
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions. If image size is smaller than output size along any edge, image is
    padded with 0 and then center cropped.

    Args:
        img (PIL Image or Tensor): Image to be cropped.
        output_size (sequence or int): (height, width) of the crop box. If int or
        sequence with single int, it is used for both directions.
        fill (int, Tuple[int]): Padding color

    Returns:
        PIL Image or Tensor: Cropped image.
    """
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

    _, image_height, image_width = F.get_dimensions(img)
    crop_height, crop_width = output_size

    if crop_width > image_width or crop_height > image_height:
        padding_ltrb = [
            (crop_width - image_width) // 2 if crop_width > image_width else 0,
            (crop_height - image_height) // 2 if crop_height > image_height else 0,
            (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
            (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
        ]
        img = F.pad(img, padding_ltrb, fill=fill)
        _, image_height, image_width = F.get_dimensions(img)
        if crop_width == image_width and crop_height == image_height:
            return img

    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
    return F.crop(img, crop_top, crop_left, crop_height, crop_width)


class CenterCropOrPad(torch.nn.Module):
    """Crops the given image at the center.
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions. If image size is smaller than output size along any edge, image is
    padded with 0 and then center cropped.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made. If provided a sequence of length 1, it will be interpreted as
            (size[0], size[0]).
    """

    def __init__(self, size, fill=0):
        super().__init__()
        self.size = _setup_size(
            size, error_msg='Please provide only two dimensions (h, w) for size.'
        )
        self.fill = fill

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            PIL Image or Tensor: Cropped image.
        """
        return center_crop_or_pad(img, self.size, fill=self.fill)

    def __repr__(self) -> str:
        return f'{self.__class__.__name__}(size={self.size})'


def _convert_to_rgb(image):
    return image.convert('RGB')


class _ColorJitter(object):
    """
    Apply Color Jitter to the PIL image with a specified probability.
    """

    def __init__(self, brightness=0.0, contrast=0.0, saturation=0.0, hue=0.0, p=0.8):
        assert 0.0 <= p <= 1.0
        self.p = p
        self.transf = ColorJitter(
            brightness=brightness, contrast=contrast, saturation=saturation, hue=hue
        )

    def __call__(self, img):
        if random.random() < self.p:
            return self.transf(img)
        else:
            return img


class _GrayScale(object):
    """
    Apply Gray Scale to the PIL image with a specified probability.
    """

    def __init__(self, p=0.2):
        assert 0.0 <= p <= 1.0
        self.p = p
        self.transf = Grayscale(num_output_channels=3)

    def __call__(self, img):
        if random.random() < self.p:
            return self.transf(img)
        else:
            return img


def image_transform(
    image_size: Union[int, Tuple[int, int]],
    is_train: bool,
    mean: Optional[Tuple[float, ...]] = None,
    std: Optional[Tuple[float, ...]] = None,
    resize_mode: Optional[str] = None,
    interpolation: Optional[str] = None,
    fill_color: int = 0,
    aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
):
    mean = mean or OPENAI_DATASET_MEAN
    if not isinstance(mean, (list, tuple)):
        mean = (mean,) * 3

    std = std or OPENAI_DATASET_STD
    if not isinstance(std, (list, tuple)):
        std = (std,) * 3

    interpolation = interpolation or 'bicubic'
    assert interpolation in ['bicubic', 'bilinear', 'random']
    # NOTE random is ignored for interpolation_mode, so defaults to BICUBIC for
    # inference if set
    interpolation_mode = (
        InterpolationMode.BILINEAR
        if interpolation == 'bilinear'
        else InterpolationMode.BICUBIC
    )

    resize_mode = resize_mode or 'shortest'
    assert resize_mode in ('shortest', 'longest', 'squash')

    if isinstance(aug_cfg, dict):
        aug_cfg = AugmentationCfg(**aug_cfg)
    else:
        aug_cfg = aug_cfg or AugmentationCfg()

    normalize = Normalize(mean=mean, std=std)

    if is_train:
        aug_cfg_dict = {k: v for k, v in asdict(aug_cfg).items() if v is not None}
        use_timm = aug_cfg_dict.pop('use_timm', False)
        if use_timm:
            from timm.data import create_transform  # timm can still be optional

            if isinstance(image_size, (tuple, list)):
                assert len(image_size) >= 2
                input_size = (3,) + image_size[-2:]
            else:
                input_size = (3, image_size, image_size)

            aug_cfg_dict.setdefault('color_jitter', None)  # disable by default
            # drop extra non-timm items
            aug_cfg_dict.pop('color_jitter_prob', None)
            aug_cfg_dict.pop('gray_scale_prob', None)

            train_transform = create_transform(
                input_size=input_size,
                is_training=True,
                hflip=0.0,
                mean=mean,
                std=std,
                re_mode='pixel',
                interpolation=interpolation,
                **aug_cfg_dict,
            )
        else:
            train_transform = [
                RandomResizedCrop(
                    image_size,
                    scale=aug_cfg_dict.pop('scale'),
                    interpolation=InterpolationMode.BICUBIC,
                ),
                _convert_to_rgb,
            ]
            if aug_cfg.color_jitter_prob:
                assert (
                    aug_cfg.color_jitter is not None and len(aug_cfg.color_jitter) == 4
                )
                train_transform.extend(
                    [_ColorJitter(*aug_cfg.color_jitter, p=aug_cfg.color_jitter_prob)]
                )
            if aug_cfg.gray_scale_prob:
                train_transform.extend([_GrayScale(aug_cfg.gray_scale_prob)])
            train_transform.extend(
                [
                    ToTensor(),
                    normalize,
                ]
            )
            train_transform = Compose(train_transform)
            if aug_cfg_dict:
                warnings.warn(
                    f'Unused augmentation cfg items, specify `use_timm` to use '
                    f'({list(aug_cfg_dict.keys())}).'
                )
        return train_transform
    else:
        if resize_mode == 'longest':
            transforms = [
                ResizeKeepRatio(
                    image_size, interpolation=interpolation_mode, longest=1
                ),
                CenterCropOrPad(image_size, fill=fill_color),
            ]
        elif resize_mode == 'squash':
            if isinstance(image_size, int):
                image_size = (image_size, image_size)
            transforms = [
                Resize(image_size, interpolation=interpolation_mode),
            ]
        else:
            assert resize_mode == 'shortest'
            if not isinstance(image_size, (tuple, list)):
                image_size = (image_size, image_size)
            if image_size[0] == image_size[1]:
                # simple case, use torchvision built-in Resize w/ shortest edge mode
                # (scalar size arg)
                transforms = [Resize(image_size[0], interpolation=interpolation_mode)]
            else:
                # resize shortest edge to matching target dim for non-square target
                transforms = [ResizeKeepRatio(image_size)]
            transforms += [CenterCrop(image_size)]

        transforms.extend(
            [
                _convert_to_rgb,
                ToTensor(),
                normalize,
            ]
        )
        return Compose(transforms)


def image_transform_v2(
    cfg: PreprocessCfg,
    is_train: bool,
    aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
):
    return image_transform(
        image_size=cfg.size,
        is_train=is_train,
        mean=cfg.mean,
        std=cfg.std,
        interpolation=cfg.interpolation,
        resize_mode=cfg.resize_mode,
        fill_color=cfg.fill_color,
        aug_cfg=aug_cfg,
    )