|
--- |
|
language: |
|
- en |
|
- ja |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
model_type: mistral |
|
license: apache-2.0 |
|
--- |
|
|
|
# Swallow-MS-7b-v0.1 |
|
|
|
Our Swallow-MS-7b-v0.1 model has undergone continual pre-training from the Mistral-7B-v0.1, primarily with the addition of Japanese language data. |
|
|
|
# Model Release Updates |
|
|
|
We are excited to share the release schedule for our latest models: |
|
- **April 26, 2024**: Released the [Swallow-MS-7b-instruct-v0.1](https://huggingface.co/tokyotech-llm/Swallow-MS-7b-instruct-v0.1) |
|
- **March 11, 2024**: Released the [Swallow-MS-7b-v0.1](https://huggingface.co/tokyotech-llm/Swallow-MS-7b-v0.1) |
|
![logo](./logo.png) |
|
|
|
This repository provides large language models developed by [TokyoTech-LLM](https://tokyotech-llm.github.io/). |
|
|
|
## Model Details |
|
|
|
* **Model type**: Please refer to Mistral technical report for details on the model architecture. |
|
* **Language(s)**: Japanese English |
|
* **Tokenizer**: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process. |
|
* **Contact**: swallow[at]nlp.c.titech.ac.jp |
|
|
|
|
|
## Base Model Performance |
|
|
|
### Japanese tasks |
|
|Model|Size|JCommonsenseQA|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|Average| |
|
|---------------------------|-------|---------|-------|-------|-------|------|------------|------------|------|-----| |
|
| | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|| |
|
| CyberAgentLM2-7B |7B| 0.2198 | 0.5047 | 0.5066 | 0.7799 | 0.0233 | 0.0600 | 0.2345 | 0.1499 | 0.3098 | |
|
| Llama 2 |7B| 0.3852 | 0.4240 | 0.3410 | 0.7917 | 0.1905 | 0.0760 | 0.1783 | 0.1738 | 0.3201 | |
|
| japanese-stablelm-base-beta-7b|7B| 0.3610 | 0.4478 | 0.4432 | 0.8318 | 0.2195 | 0.0720 | 0.1946 | 0.1226 | 0.3366 | |
|
| japanese-stablelm-base-ja_vocab-beta-7b|7B| 0.2172 | 0.4482 | 0.4309 | 0.8202 | 0.0757 | 0.0520 | 0.1601 | 0.1453 | 0.2937 | |
|
| ELYZA-japanese-Llama-2-7b|7B| 0.5791 | 0.4703 | 0.4019 | 0.8226 | 0.1312 | 0.0600 | 0.1795 | 0.1289 | 0.3467 | |
|
| ELYZA-japanese-Llama-2-7b-fast|7B| 0.5308 | 0.4330 | 0.3898 | 0.8131 | 0.1289 | 0.0720 | 0.1678 | 0.1143 | 0.3312 | |
|
| youri-7b (base) |7B| 0.4620 | 0.4776 | 0.4999 | 0.8506 | 0.1957 | 0.0640 | 0.2671 | **0.1971** | 0.3768 | |
|
| Swallow-7b |7B| 0.4808 | 0.5078 | 0.5968 | 0.8573 | 0.1830 | 0.1240 | 0.2510 | 0.1511 | 0.3940 | |
|
| Swallow-7b-plus |7B| 0.5478 | **0.5493** | **0.6030** | 0.8544 | 0.1806 | 0.1360 | 0.2568 | 0.1441 | 0.4090 | |
|
| Qwen-7B |7B| 0.7712 | 0.4234 | 0.2376 | 0.8594 | 0.1371 | 0.2160 | 0.1689 | 0.1801 | 0.3742 | |
|
| nekomata-7b |7B| 0.7417 | 0.4928 | 0.5022 | 0.8707 | 0.1676 | 0.1240 | **0.2673** | 0.1815 | 0.4185 | |
|
| Mistral-7B-v0.1 |7B| 0.7301 | 0.4245 | 0.2722 | 0.8563 | 0.2006 | 0.1760 | 0.1405 | 0.1733 | 0.3717 | |
|
| japanese-stablelm-base-gamma-7b|7B| 0.7364 | 0.4643 | 0.5568 | **0.8910** | **0.2293** | 0.1680 | 0.2390 | 0.1561 | 0.4301 | |
|
| Swallow-MS-7b-v0.1 |7B| **0.8570** | 0.4915 | 0.5519 | 0.8802 | 0.1988 | **0.2240** | 0.2494 | 0.1667 | **0.4524** | |
|
|
|
|
|
### English tasks |
|
|
|
|Model|Size|OpenBookQA|TriviaQA|HellaSwag|SQuAD2.0|XWINO|GSM8K|Average| |
|
|---|---|---|---|---|---|---|---|---| |
|
| | |8-shot|8-shot|8-shot|8-shot|8-shot|8-shot|| |
|
| CyberAgentLM2-7B |7B| 0.2860 | 0.3496 | 0.5003 | 0.3510 | 0.8581 | 0.0705 | 0.4026 | |
|
| Llama 2 |7B| 0.3580 | 0.6265 | 0.5860 | 0.3207 | 0.9049 | 0.1410 | 0.4895 | |
|
| japanese-stablelm-base-beta-7b|7B| 0.3620 | 0.5903 | 0.5707 | 0.2992 | 0.8994 | 0.1198 | 0.4736 | |
|
| japanese-stablelm-base-ja_vocab-beta-7b|7B| 0.3520 | 0.5549 | 0.5644 | 0.3079 | 0.8942 | 0.0538 | 0.4545 | |
|
| ELYZA-japanese-Llama-2-7b|7B| 0.3400 | 0.5875 | 0.5595 | 0.2721 | 0.8989 | 0.1638 | 0.4703 | |
|
| ELYZA-japanese-Llama-2-7b-fast|7B| 0.3280 | 0.5817 | 0.5530 | 0.2605 | 0.8989 | 0.1425 | 0.4608 | |
|
| youri-7b (base) |7B| 0.3400 | 0.5257 | 0.5540 | 0.3297 | 0.8938 | 0.0963 | 0.4566 | |
|
| Swallow-7b |7B| 0.3180 | 0.4836 | 0.5308 | 0.3125 | 0.8817 | 0.1130 | 0.4399 | |
|
| Swallow-7b-plus |7B| 0.3280 | 0.4558 | 0.5259 | 0.3134 | 0.8929 | 0.1061 | 0.4370 | |
|
| Qwen-7B |7B| 0.3640 | 0.5695 | 0.5787 | **0.3799** | 0.8933 | **0.4617** | 0.5412 | |
|
| nekomata-7b |7B| 0.3340 | 0.4371 | 0.5340 | 0.2933 | 0.8766 | 0.1531 | 0.4380 | |
|
| Mistral-7B-v0.1 |7B| **0.3660** | **0.7050** | **0.6264** | **0.3799** | **0.9157** | 0.3533 | **0.5577** | |
|
| japanese-stablelm-base-gamma-7b|7B| 0.3240 | 0.5745 | 0.5739 | 0.3546 | 0.8976 | 0.1911 | 0.4860 | |
|
| Swallow-MS-7b-v0.1 |7B| 0.3440 | 0.5976 | 0.5810 | 0.3364 | 0.9037 | 0.2623 | 0.5042 | |
|
|
|
|
|
### Code generation tasks |
|
|
|
|Model|Size|JHumanEval|HumanEval| |
|
|---|---|---|---| |
|
| | |pass@1|pass@1| |
|
| CyberAgentLM2-7B |7B|0.0634|0.0756| |
|
| Llama 2 |7B|0.1152|0.1378| |
|
| japanese-stablelm-base-beta-7b|7B|0.1018|0.1280| |
|
| japanese-stablelm-base-ja_vocab-beta-7b|7B|0.0896|0.1122| |
|
| ELYZA-japanese-Llama-2-7b|7B|0.0287|0.0427| |
|
| ELYZA-japanese-Llama-2-7b-fast|7B| 0.0000 |0.0037| |
|
| youri-7b (base) |7B|0.0829|0.0982| |
|
| Swallow-7b |7B|0.0183|0.0183| |
|
| Swallow-7b-plus |7B| 0.0061|0.0037| |
|
| Qwen-7B |7B|0.1701|0.1805| |
|
| nekomata-7b |7B|0.0988|0.1402| |
|
| Mistral-7B-v0.1 |7B|**0.2555**|**0.2933**| |
|
| japanese-stablelm-base-gamma-7b|7B|0.1823|0.1915| |
|
| Swallow-MS-7b-v0.1 |7B|0.2305|0.2768| |
|
|
|
## Evaluation Benchmarks |
|
|
|
### Japanese evaluation benchmarks |
|
|
|
We used llm-jp-eval(v1.0.0) and JP Language Model Evaluation Harness(commit #9b42d41). The details are as follows: |
|
|
|
- Multiple-choice question answering (JCommonsenseQA [Kurihara+, 2022]) |
|
- Open-ended question answering (JEMHopQA [Ishii+, 2023]) |
|
- Open-ended question answering (NIILC [Sekine, 2003]) |
|
- Machine reading comprehension (JSQuAD [Kurihara+, 2022]) |
|
- Automatic summarization (XL-Sum [Hasan+, 2021]) |
|
- Machine translation (WMT2020 ja-en [Barrault+, 2020]) |
|
- Machine translation (WMT2020 en-ja [Barrault+, 2020]) |
|
- Mathematical reasoning (MGSM [Shi+, 2023]) |
|
|
|
### English evaluation benchmarks |
|
|
|
We used the Language Model Evaluation Harness(v.0.3.0). The details are as follows: |
|
|
|
- Multiple-choice question answering (OpenBookQA [Mihaylov+, 2018]) |
|
- Open-ended question answering (TriviaQA [Joshi+, 2017]) |
|
- Machine reading comprehension (SQuAD 2.0 [Rajpurkar+, 2018]) |
|
- Commonsense reasoning (XWINO [Tikhonov & Ryabinin, 2021]) |
|
- Natural language inference (HellaSwag [Zellers+, 2019]) |
|
- Mathematical reasoning (GSM8k [Cobbe+, 2021]) |
|
|
|
### Code evaluation benchmarks |
|
|
|
We utilized the Code Generation LM Evaluation Harness [Allal+, 2022] (commit #0261c52). The details are as follows: |
|
|
|
- Code generation (HumanEval [Chen+, 2021]) |
|
- Code generation in Japanese (JHumanEval [Satoh+, 2024]) |
|
|
|
|
|
## Usage |
|
|
|
First install additional dependencies in [requirements.txt](./requirements.txt): |
|
|
|
```sh |
|
pip install -r requirements.txt |
|
``` |
|
|
|
### Use the base model |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
model_name = "tokyotech-llm/Swallow-MS-7b-v0.1" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") |
|
prompt = "東京工業大学の主なキャンパスは、" |
|
input_ids = tokenizer.encode( |
|
prompt, |
|
add_special_tokens=False, |
|
return_tensors="pt" |
|
) |
|
tokens = model.generate( |
|
input_ids.to(device=model.device), |
|
max_new_tokens=128, |
|
temperature=0.99, |
|
top_p=0.95, |
|
do_sample=True, |
|
) |
|
|
|
out = tokenizer.decode(tokens[0], skip_special_tokens=True) |
|
print(out) |
|
``` |
|
|
|
## Training Datasets |
|
|
|
### Continual Pre-Training |
|
The following datasets were used for continual pre-training. |
|
|
|
- [Algebraic Stack](https://huggingface.co/datasets/EleutherAI/proof-pile-2) |
|
- [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) |
|
- [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) |
|
- [Swallow Corpus](https://arxiv.org/abs/2404.17733) |
|
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile) |
|
|
|
## Risks and Limitations |
|
|
|
The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. |
|
|
|
## Acknowledgements |
|
|
|
We thank Mistral AI for releasing Mistral 7B v0.1 under an open license for others to build on. |
|
|
|
Our project is supported by the [ABCI Large-scale Language Model Building Support Program](https://abci.ai/en/link/llm_support_program.html) of the National Institute of Advanced Industrial Science and Technology. |
|
|
|
## License |
|
|
|
apache-2.0 |
|
|
|
## Authors |
|
|
|
Here are the team members: |
|
- From [Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members: |
|
- [Naoaki Okazaki](https://www.chokkan.org/index.ja.html) |
|
- [Sakae Mizuki](https://s-mizuki-nlp.github.io/) |
|
- [Hiroki Iida](https://meshidenn.github.io/) |
|
- [Mengsay Loem](https://loem-ms.github.io/) |
|
- [Shota Hirai](https://huggingface.co/Kotemo428) |
|
- [Kakeru Hattori](https://aya-se.vercel.app/) |
|
- [Masanari Ohi](https://twitter.com/stjohn2007) |
|
- From [YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members: |
|
- [Rio Yokota](https://twitter.com/rioyokota) |
|
- [Kazuki Fujii](https://twitter.com/okoge_kaz) |
|
- [Taishi Nakamura](https://twitter.com/Setuna7777_2) |
|
|
|
## How to cite |
|
|
|
If you find our work helpful, please feel free to cite us. |
|
|
|
``` |
|
@inproceedings{Fujii:COLM2024, |
|
title={Continual Pre-Training for Cross-Lingual LLM Adaptation: |
|
Enhancing Japanese Language Capabilities}, |
|
author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki |
|
Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae |
|
Mizuki and Rio Yokota and Naoaki Okazaki}, |
|
booktitle="Proceedings of the First Conference on Language Modeling", |
|
series={COLM}, |
|
pages="(to appear)", |
|
year="2024", |
|
month=oct, |
|
address={University of Pennsylvania, USA}, |
|
} |
|
|
|
@inproceedings{Okazaki:COLM2024, |
|
title={Building a Large Japanese Web Corpus for Large Language Models}, |
|
author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki |
|
Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay |
|
Loem and Rio Yokota and Sakae Mizuki}, |
|
booktitle="Proceedings of the First Conference on Language Modeling", |
|
series={COLM}, |
|
pages="(to appear)", |
|
year="2024", |
|
month=oct, |
|
address={University of Pennsylvania, USA}, |
|
} |
|
``` |