File size: 8,347 Bytes
6471836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright (c) 2023, Dan Fu and Simran Arora.
# Adapted from https://github.com/HazyResearch/safari/blob/main/src/models/sequence/hyena.py

import math

import torch
import torch.nn as nn
import torch.nn.functional as F

from einops import rearrange
import opt_einsum as oe
contract = oe.contract

""" Utils for the training loop. Copied from https://github.com/HazyResearch/transformers/blob/master/src/utils/utils.py """

class OptimModule(nn.Module):
    """ Interface for Module that allows registering buffers/parameters with configurable optimizer hyperparameters """

    def register(self, name, tensor, lr=None, wd=0.0):
        """Register a tensor with a configurable learning rate and 0 weight decay"""

        if lr == 0.0:
            self.register_buffer(name, tensor)
        else:
            self.register_parameter(name, nn.Parameter(tensor))

            optim = {}
            if lr is not None: optim["lr"] = lr
            if wd is not None: optim["weight_decay"] = wd
            setattr(getattr(self, name), "_optim", optim)


def fftconv_ref(u, k, D, dropout_mask, gelu=True, k_rev=None):
    # u.shape:   B H L
    seqlen = u.shape[-1]
    
    fft_size = 2 * seqlen
    k_f = torch.fft.rfft(k, n=fft_size) / fft_size
    if k_rev is not None:
        k_rev_f = torch.fft.rfft(k_rev, n=fft_size) / fft_size
        k_f = k_f + k_rev_f.conj()
    u_f = torch.fft.rfft(u.to(dtype=k.dtype), n=fft_size)

    if len(u.shape) > 3:
        k_f = k_f.unsqueeze(1)

    y = torch.fft.irfft(u_f * k_f, n=fft_size, norm="forward")[..., :seqlen]

    out = y + u * D

    if gelu:
        out = F.gelu(out)
    if dropout_mask is not None:
        return (out * rearrange(dropout_mask, "b H -> b H 1")).to(dtype=u.dtype)
    else:
        return out.to(dtype=u.dtype)


@torch.jit.script
def mul_sum(q, y):
    return (q * y).sum(dim=1)


class Sin(nn.Module):
    def __init__(self, dim, w=10, w_mod=1, train_freq=True):
        super().__init__()

        init_tensor = torch.ones(1, dim)
        self.freq = (
            nn.Parameter(w * init_tensor)
            if train_freq
            else w * torch.ones(1, dim)
        )
        self.w_mod = w_mod

    def forward(self, x):
        return torch.sin(self.w_mod * self.freq * x)


class PositionalEmbedding(OptimModule):
    def __init__(self, emb_dim: int, seq_len: int, lr_pos_emb: float = 1e-5, **kwargs):
        """Complex exponential positional embeddings for Hyena filters."""
        super().__init__()

        self.seq_len = seq_len
        # The time embedding fed to the filteres is normalized so that t_f = 1
        t = torch.linspace(0, 1, self.seq_len)[None, :, None]  # 1, L, 1

        if emb_dim > 1:
            bands = (emb_dim - 1) // 2
        # To compute the right embeddings we use the "proper" linspace
        t_rescaled = torch.linspace(0, seq_len - 1, seq_len)[None, :, None]
        w = 2 * math.pi * t_rescaled / seq_len  # 1, L, 1

        f = torch.linspace(1e-4, bands - 1, bands)[None, None]
        z = torch.exp(-1j * f * w)
        z = torch.cat([t, z.real, z.imag], dim=-1)
        self.register("z", z, lr=lr_pos_emb)
        self.register("t", t, lr=0.0)

    def forward(self, L):
        return self.z[:, :L], self.t[:, :L]


class ExponentialModulation(OptimModule):
    def __init__(
        self,
        d_model,
        fast_decay_pct=0.3,
        slow_decay_pct=1.5,
        target=1e-2,
        modulation_lr=0.0,
        shift: float = 0.0,
        **kwargs,
    ):
        super().__init__()
        self.shift = shift
        max_decay = math.log(target) / fast_decay_pct
        min_decay = math.log(target) / slow_decay_pct
        deltas = torch.linspace(min_decay, max_decay, d_model)[None, None]
        self.register("deltas", deltas, lr=modulation_lr)

    def forward(self, t, x):
        decay = torch.exp(-t * self.deltas.abs())
        x = x * (decay + self.shift)
        return x


class HyenaFilter(OptimModule):
    def __init__(
        self,
        d_model,
        emb_dim=3,  # dim of input to MLP, augments with positional encoding
        order=16,  # width of the implicit MLP
        seq_len=1024,
        lr=1e-3,
        lr_pos_emb=1e-5,
        dropout=0.0,
        w=1,  # frequency of periodic activations
        w_mod=1, # non-learnable modification of w
        wd=0,  # weight decay of kernel parameters
        bias=True,
        num_inner_mlps=2,
        linear_mixer=False,
        modulate: bool = True,
        normalized=False,
        bidirectional=False,
        **kwargs,
    ):
        """
        Implicit long filter with modulation.

        Args:
            d_model: number of channels in the input
            emb_dim: dimension of the positional encoding (`emb_dim` - 1) // 2 is the number of bands
            order: width of the FFN
            num_inner_mlps: number of inner linear layers inside filter MLP

        Note:
            filter_dropout is not implemented
        """
        super().__init__()
        
        self.d_model=d_model
        self.emb_dim=emb_dim
        self.seq_len=seq_len
        self.modulate=modulate
        self.use_bias = bias
        self.bidirectional = bidirectional

        self.bias = nn.Parameter(torch.randn(self.d_model))
        self.dropout = nn.Dropout(dropout)

        act = Sin(dim=order, w=w, w_mod=w_mod)
        assert (
            emb_dim % 2 != 0 and emb_dim >= 3
        ), "emb_dim must be odd and greater or equal to 3 (time, sine and cosine)"
        self.pos_emb = PositionalEmbedding(emb_dim, seq_len, lr_pos_emb)

        # uses a variable number of inner linear layers
        if linear_mixer is False:
            self.implicit_filter = nn.Sequential(
                nn.Linear(emb_dim, order),
                act,
            )
            for i in range(num_inner_mlps):
                self.implicit_filter.append(nn.Linear(order, order))
                self.implicit_filter.append(act)
            self.implicit_filter.append(nn.Linear(order, d_model, bias=False))
        else:
            self.implicit_filter = nn.Sequential(
                nn.Linear(emb_dim, d_model, bias=False),
            )

        if self.bidirectional:
            self.implicit_filter_rev = nn.Sequential(
                nn.Linear(emb_dim, order),
                act,
            )
            for i in range(num_inner_mlps):
                self.implicit_filter_rev.append(nn.Linear(order, order))
                self.implicit_filter_rev.append(act)
            self.implicit_filter_rev.append(nn.Linear(order, d_model, bias=False))

        self.modulation = ExponentialModulation(d_model, **kwargs)

        self.normalized = normalized
        for c in self.implicit_filter.children():
            for name, v in c.state_dict().items():
                optim = {"weight_decay": wd, "lr": lr}
                setattr(getattr(c, name), "_optim", optim)

    def filter(self, L, *args, **kwargs):
        z, t = self.pos_emb(L)
        h = self.implicit_filter(z)
        if self.modulate:
            h = self.modulation(t, h)
        if self.normalized:
            h = h / torch.norm(h, dim=-1, p=1, keepdim=True)
        return h
    
    def filter_rev(self, L, *args, **kwargs):
        z, t = self.pos_emb(L)
        h = self.implicit_filter_rev(z)
        if self.modulate:
            h = self.modulation(t, h)
        if self.normalized:
            h = h / torch.norm(h, dim=-1, p=1, keepdim=True)
        return h

    def forward(self, x, L, k_fwd=None, k_rev=None, bias=None, *args, **kwargs):
        if k_fwd is None:
            k_fwd = self.filter(L)
            if self.bidirectional and k_rev is None:
                k_rev = self.filter_rev(L)

        # Ensure compatibility with filters that return a tuple
        k_fwd = k_fwd[0] if type(k_fwd) is tuple else k_fwd
        if bias is None:
            bias = self.bias
        bias = bias if self.use_bias else 0 * bias

        if self.bidirectional:
            k_rev = k_rev[0] if type(k_rev) is tuple else k_rev
            k = F.pad(k_fwd, (0, L)) \
                      + F.pad(k_rev.flip(-1), (L, 0))
        else:
            k = k_fwd

        
        y = fftconv_ref(
            x, 
            k, 
            bias, 
            dropout_mask=None,
            gelu=False,
        )

        return y.to(dtype=x.dtype)