|
|
|
|
|
|
|
|
|
import torch |
|
from torch import Tensor |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, config): |
|
super(RMSNorm, self).__init__() |
|
self.eps, self.hidden_size = config.eps, config.hidden_size |
|
self.scale = torch.nn.Parameter(torch.ones(self.hidden_size)) |
|
self.register_parameter("scale", self.scale) |
|
self.use_flash_rmsnorm = config.get("use_flash_rmsnorm", False) |
|
|
|
if self.use_flash_rmsnorm: |
|
try: |
|
from flash_attn.ops.rms_norm import rms_norm as rmsnorm_func |
|
|
|
self.rmsnorm_func = rmsnorm_func |
|
except: |
|
raise ImportError( |
|
"For `use_flash_rmsnorm`: `pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/layer_norm`" |
|
) |
|
|
|
def forward(self, x): |
|
if self.use_flash_rmsnorm: |
|
return self.rmsnorm_func(x, self.scale, self.eps) |
|
else: |
|
y = x / (x.norm(2, dim=-1, keepdim=True) * self.hidden_size ** (-1.0 / 2) + self.eps) |
|
return self.scale * y |
|
|
|
|
|
class ParallelGatedMLP(nn.Module): |
|
def __init__( |
|
self, |
|
config, |
|
): |
|
super().__init__() |
|
|
|
multiple_of = config.get("inner_size_multiple_of", 64) |
|
self.act = F.silu |
|
|
|
self.multiple_of = multiple_of * config.model_parallel_size |
|
|
|
inner_size = int(2 * config.hidden_size * 4 / 3) |
|
inner_size = self.multiple_of * ((inner_size + self.multiple_of - 1) // self.multiple_of) |
|
|
|
if config.get("inner_mlp_size", None) is not None: |
|
inner_size = config.inner_mlp_size |
|
|
|
self.l1 = nn.Linear( |
|
in_features=config.hidden_size, |
|
out_features=inner_size, |
|
bias=False, |
|
) |
|
self.l2 = nn.Linear( |
|
in_features=config.hidden_size, |
|
out_features=inner_size, |
|
bias=False, |
|
) |
|
self.l3 = nn.Linear( |
|
in_features=inner_size, |
|
out_features=config.hidden_size, |
|
bias=False, |
|
) |
|
|
|
def forward(self, z): |
|
z1, z2 = self.l1(z), self.l2(z) |
|
if type(z1) == tuple: |
|
z1 = z1[0] |
|
if type(z2) == tuple: |
|
z2 = z2[0] |
|
y = self.l3(self.act(z1) * z2) |
|
return y[0] if type(y) == tuple else y |
|
|
|
|
|
class Embedding(nn.Module): |
|
_train_dtype = "bf16" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) |
|
|
|
def embed(self, input_ids, position_ids=None, tokentype_ids=None): |
|
embeddings = self.word_embeddings(input_ids) |
|
return embeddings |
|
|
|
def unembed(self, u): |
|
weight = self.word_embeddings.weight |
|
return torch.matmul(u, weight) |
|
|
|
|
|
class VocabParallelEmbedding(nn.Embedding): |
|
"Adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/embedding.py" |
|
|
|
def __init__(self, config): |
|
vocab_size, process_group, padding_idx = ( |
|
config.vocab_size, |
|
config.get("process_group", None), |
|
config.get("padding_idx", None), |
|
) |
|
self.process_group = process_group |
|
if process_group is not None: |
|
world_size = torch.distributed.get_world_size(process_group) |
|
if vocab_size % world_size != 0: |
|
raise ValueError( |
|
f"vocab_size ({vocab_size}) must be divisible by " f"world_size ({world_size})" |
|
) |
|
if world_size > 1 and padding_idx is not None: |
|
raise RuntimeError("ParallelEmbedding does not support padding_idx") |
|
else: |
|
world_size = 1 |
|
super().__init__( |
|
vocab_size // world_size, |
|
embedding_dim=config.hidden_size, |
|
padding_idx=padding_idx, |
|
) |
|
|
|
def embed(self, x: Tensor) -> Tensor: |
|
if self.process_group is None: |
|
return self.forward(x) |
|
else: |
|
rank = torch.distributed.get_rank(self.process_group) |
|
vocab_size = self.num_embeddings |
|
vocab_start_index, vocab_end_index = ( |
|
rank * vocab_size, |
|
(rank + 1) * vocab_size, |
|
) |
|
|
|
input_ids_mask = (x < vocab_start_index) | (x >= vocab_end_index) |
|
x = x - vocab_start_index |
|
x[input_ids_mask] = 0 |
|
embeddings = self.forward(x) |
|
embeddings[input_ids_mask] = 0.0 |
|
|
|
torch.distributed.all_reduce(embeddings, group=self.process_group) |
|
return embeddings |
|
|
|
def unembed(self, u: Tensor) -> Tensor: |
|
if self.process_group is None: |
|
return u @ self.weight.T |
|
else: |
|
raise NotImplementedError |
|
|