EugeneLYC
commited on
Commit
·
230c4b6
1
Parent(s):
0dced26
add the config files and code
Browse files- README.md +15 -0
- cache.py +44 -0
- config.json +2 -1
- configuration_hyena.py +92 -0
- engine.py +346 -0
- layers.py +147 -0
- model.py +425 -0
- modeling_hyena.py +145 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +7 -0
- utils.py +89 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
---
|
6 |
+
|
7 |
+
## StripedHyena-Hessian-7B (SH-7B)
|
8 |
+
|
9 |
+
|
10 |
+
### Model Architecture
|
11 |
+
|
12 |
+
StripedHyena is a hybrid architecture composed of multi-head, grouped-query attention and gated convolutions arranged in [Hyena](https://arxiv.org/abs/2302.10866) blocks, different from traditional decoder-only Transformers.
|
13 |
+
- Costant memory decoding in Hyena blocks via representation of convolutions as state-space models (modal or canonical form), or as truncated filters.
|
14 |
+
- Lower latency to preprocess long prompts.
|
15 |
+
- Improvements to training and inference compute-optimal scaling laws, compared to Transformers.
|
cache.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Together
|
2 |
+
# This software is distributed under the terms of the Apache License, Version 2.0
|
3 |
+
# Author: Michael Poli
|
4 |
+
|
5 |
+
from torch import Tensor
|
6 |
+
from dataclasses import dataclass, field
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
|
10 |
+
# https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py
|
11 |
+
@dataclass
|
12 |
+
class InferenceParams:
|
13 |
+
"""Inference parameters that are passed to the main model in order
|
14 |
+
to efficienly calculate and store the context during inference."""
|
15 |
+
|
16 |
+
max_seqlen: int
|
17 |
+
max_batch_size: int
|
18 |
+
seqlen_offset: int = 0
|
19 |
+
batch_size_offset: int = 0
|
20 |
+
key_value_memory_dict: dict = field(default_factory=dict)
|
21 |
+
lengths_per_sample: Optional[Tensor] = None
|
22 |
+
|
23 |
+
def reset(self, max_seqlen, max_batch_size):
|
24 |
+
self.max_seqlen = max_seqlen
|
25 |
+
self.max_batch_size = max_batch_size
|
26 |
+
self.seqlen_offset = 0
|
27 |
+
if self.lengths_per_sample is not None:
|
28 |
+
self.lengths_per_sample.zero_()
|
29 |
+
|
30 |
+
|
31 |
+
@dataclass
|
32 |
+
class RecurrentInferenceParams:
|
33 |
+
"""Inference parameters passed to blocks with recurrent mode."""
|
34 |
+
|
35 |
+
fir_filter_length: int = 3
|
36 |
+
state_dim: int = 16
|
37 |
+
seqlen_offset: int = 0
|
38 |
+
fir_state_dict: dict = field(default_factory=dict)
|
39 |
+
state_dict: dict = field(default_factory=dict)
|
40 |
+
|
41 |
+
def reset(self):
|
42 |
+
self.fir_filter_length = 3
|
43 |
+
self.state_dim = 16
|
44 |
+
self.seqlen_offset = 0
|
config.json
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
{
|
2 |
-
"_commit_hash": "
|
3 |
"_name_or_path": "togethercomputer/StripedHyena-Hessian-7B",
|
|
|
4 |
"architectures": [
|
5 |
"StripedHyenaModelForCausalLM"
|
6 |
],
|
|
|
1 |
{
|
2 |
+
"_commit_hash": "9ae63354fd42cc1e14334bba246276540c8b9017",
|
3 |
"_name_or_path": "togethercomputer/StripedHyena-Hessian-7B",
|
4 |
+
"model_type": "stripedhyena",
|
5 |
"architectures": [
|
6 |
"StripedHyenaModelForCausalLM"
|
7 |
],
|
configuration_hyena.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
import json
|
3 |
+
|
4 |
+
|
5 |
+
class StripedHyenaConfig(PretrainedConfig):
|
6 |
+
model_type = "stripedhyena"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
vocab_size=32000,
|
11 |
+
hidden_size=4096,
|
12 |
+
num_filters=4096,
|
13 |
+
inner_mlp_size=14336,
|
14 |
+
attn_layer_idxs=[],
|
15 |
+
hyena_layer_idxs=[],
|
16 |
+
num_layers=32,
|
17 |
+
tie_embeddings=False,
|
18 |
+
short_filter_length=3,
|
19 |
+
num_attention_heads=32,
|
20 |
+
proj_groups=4,
|
21 |
+
hyena_filter_groups=1,
|
22 |
+
split_k0=True,
|
23 |
+
column_split_hyena=True,
|
24 |
+
column_split=False,
|
25 |
+
model_parallel_size=1,
|
26 |
+
pipe_parallel_size=1,
|
27 |
+
short_filter_bias=True,
|
28 |
+
mha_out_proj_bias=False,
|
29 |
+
qkv_proj_bias=False,
|
30 |
+
final_norm=True,
|
31 |
+
use_cache=True,
|
32 |
+
use_flash_attention_2=True,
|
33 |
+
use_flash_rmsnorm=True,
|
34 |
+
use_flash_depthwise=False,
|
35 |
+
use_flashfft=False,
|
36 |
+
inference_mode=False,
|
37 |
+
prefill_style="fft",
|
38 |
+
max_seqlen=32768,
|
39 |
+
eps=1e-5,
|
40 |
+
state_size=2,
|
41 |
+
rotary_emb_base=500000,
|
42 |
+
smeared_gqa=False,
|
43 |
+
make_vocab_size_divisible_by=8,
|
44 |
+
log_intermediate_values=False,
|
45 |
+
**kwargs,
|
46 |
+
):
|
47 |
+
self.vocab_size = vocab_size
|
48 |
+
self.hidden_size = hidden_size
|
49 |
+
self.num_filters = num_filters
|
50 |
+
self.inner_mlp_size = inner_mlp_size
|
51 |
+
self.attn_layer_idxs = attn_layer_idxs
|
52 |
+
self.hyena_layer_idxs = hyena_layer_idxs
|
53 |
+
self.num_layers = num_layers
|
54 |
+
self.tie_embeddings = tie_embeddings
|
55 |
+
self.short_filter_length = short_filter_length
|
56 |
+
self.num_attention_heads = num_attention_heads
|
57 |
+
self.proj_groups = proj_groups
|
58 |
+
self.hyena_filter_groups = hyena_filter_groups
|
59 |
+
self.split_k0 = split_k0
|
60 |
+
self.column_split_hyena = column_split_hyena
|
61 |
+
self.column_split = column_split
|
62 |
+
self.model_parallel_size = model_parallel_size
|
63 |
+
self.pipe_parallel_size = pipe_parallel_size
|
64 |
+
self.short_filter_bias = short_filter_bias
|
65 |
+
self.mha_out_proj_bias = mha_out_proj_bias
|
66 |
+
self.qkv_proj_bias = qkv_proj_bias
|
67 |
+
self.final_norm = final_norm
|
68 |
+
self.use_cache = use_cache
|
69 |
+
self.use_flash_attention_2 = use_flash_attention_2
|
70 |
+
self.use_flash_rmsnorm = use_flash_rmsnorm
|
71 |
+
self.use_flash_depthwise = use_flash_depthwise
|
72 |
+
self.use_flashfft = use_flashfft
|
73 |
+
self.inference_mode = inference_mode
|
74 |
+
self.prefill_style = prefill_style
|
75 |
+
self.max_seqlen = max_seqlen
|
76 |
+
self.eps = eps
|
77 |
+
self.state_size = state_size
|
78 |
+
self.rotary_emb_base = rotary_emb_base
|
79 |
+
self.smeared_gqa = smeared_gqa
|
80 |
+
self.make_vocab_size_divisible_by = make_vocab_size_divisible_by
|
81 |
+
self.log_intermediate_values = log_intermediate_values
|
82 |
+
super().__init__(**kwargs)
|
83 |
+
|
84 |
+
def to_dict(self):
|
85 |
+
return {attr: getattr(self, attr) for attr in self.__dict__}
|
86 |
+
|
87 |
+
@classmethod
|
88 |
+
def from_original_config(cls, config_path, **kwargs):
|
89 |
+
with open(config_path, "r") as f:
|
90 |
+
config = json.load(f)
|
91 |
+
|
92 |
+
return cls(**config, **kwargs)
|
engine.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Together
|
2 |
+
# This software is distributed under the terms of the Apache License, Version 2.0
|
3 |
+
# Author: Michael Poli
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
try:
|
10 |
+
import conv1d_cpp
|
11 |
+
except:
|
12 |
+
pass
|
13 |
+
from .utils import column_split
|
14 |
+
|
15 |
+
|
16 |
+
def canonicalize_modal_system(poles, residues):
|
17 |
+
"""Canonicalize a modal system.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
poles (Tensor): The poles of the system.
|
21 |
+
residues (Tensor): The residues of the system.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
Tuple[Tensor, Tensor]: The canonicalized poles and residues.
|
25 |
+
"""
|
26 |
+
raise NotImplementedError
|
27 |
+
|
28 |
+
|
29 |
+
IIR_PREFILL_MODES = [
|
30 |
+
"recurrence",
|
31 |
+
"modal-fft",
|
32 |
+
"hybrid-modal-recurrence",
|
33 |
+
"modal-scan",
|
34 |
+
"canonical-fft",
|
35 |
+
"iir-fir-caching",
|
36 |
+
]
|
37 |
+
|
38 |
+
|
39 |
+
class HyenaInferenceEngine:
|
40 |
+
def __init__(
|
41 |
+
self, fir_fn=None, fftconv_fn=None, iir_prefill_style="modal-fft", layer_idx=None
|
42 |
+
) -> None:
|
43 |
+
self.fir_fn = fir_fn
|
44 |
+
self.fftconv_fn = fftconv_fn
|
45 |
+
assert (
|
46 |
+
iir_prefill_style in IIR_PREFILL_MODES
|
47 |
+
), f"iir_prefill_style must be one of {IIR_PREFILL_MODES}"
|
48 |
+
self.iir_prefill_style = iir_prefill_style
|
49 |
+
self.layer_idx = layer_idx
|
50 |
+
self.low_mem_mode = False
|
51 |
+
|
52 |
+
def parallel_fir(
|
53 |
+
self,
|
54 |
+
fir_fn,
|
55 |
+
u,
|
56 |
+
weight,
|
57 |
+
bias,
|
58 |
+
L,
|
59 |
+
fir_length=3,
|
60 |
+
inference_params=None,
|
61 |
+
prefill_mode=None,
|
62 |
+
padding_mask=None,
|
63 |
+
):
|
64 |
+
"""Compute the output state of the long convolutional filter."""
|
65 |
+
# prepare input layout, dimensions and dispatch to fir kernel
|
66 |
+
if fir_fn != torch.nn.functional.conv1d:
|
67 |
+
z_pre = fir_fn(u)[:, :L] # B, L, D
|
68 |
+
z_pre = z_pre.permute(0, 2, 1)
|
69 |
+
else:
|
70 |
+
u = u.permute(0, 2, 1) # B, D, L
|
71 |
+
z_pre = fir_fn(
|
72 |
+
u,
|
73 |
+
weight,
|
74 |
+
bias,
|
75 |
+
stride=1,
|
76 |
+
padding=fir_length - 1,
|
77 |
+
groups=u.shape[1],
|
78 |
+
)[..., :L]
|
79 |
+
|
80 |
+
# handle padding post fir, the only place with biases
|
81 |
+
if type(padding_mask) == torch.Tensor:
|
82 |
+
z_pre = z_pre * padding_mask[:, None]
|
83 |
+
|
84 |
+
if inference_params is not None:
|
85 |
+
# handle seqlen last and dim last cases for `u`
|
86 |
+
if fir_fn != torch.nn.functional.conv1d:
|
87 |
+
fir_state = u[:, -fir_length + 1 :].permute(0, 2, 1)
|
88 |
+
else:
|
89 |
+
fir_state = u[..., -fir_length + 1 :]
|
90 |
+
else:
|
91 |
+
fir_state = None
|
92 |
+
|
93 |
+
return z_pre, fir_state
|
94 |
+
|
95 |
+
def parallel_iir(
|
96 |
+
self,
|
97 |
+
z_pre,
|
98 |
+
h,
|
99 |
+
D,
|
100 |
+
L,
|
101 |
+
poles,
|
102 |
+
t,
|
103 |
+
dims,
|
104 |
+
layer_idx,
|
105 |
+
inference_params=None,
|
106 |
+
prefill_style="fft",
|
107 |
+
fftconv_fn=None,
|
108 |
+
padding_mask=None,
|
109 |
+
use_flashfft=False,
|
110 |
+
column_split_hyena=False,
|
111 |
+
long_fir_threshold=None,
|
112 |
+
):
|
113 |
+
"""Compute the output state of the short convolutional filter."""
|
114 |
+
fft_size = 2 * L
|
115 |
+
hidden_size, num_attention_heads, hidden_size_per_attention_head, _, _ = dims
|
116 |
+
# Compatibility with training infra that column splits the projections
|
117 |
+
if column_split_hyena:
|
118 |
+
z = z_pre.reshape(
|
119 |
+
z_pre.shape[0],
|
120 |
+
num_attention_heads,
|
121 |
+
3 * hidden_size_per_attention_head,
|
122 |
+
z_pre.shape[2],
|
123 |
+
)
|
124 |
+
x2, x1, v = (
|
125 |
+
z[:, :, :hidden_size_per_attention_head],
|
126 |
+
z[
|
127 |
+
:,
|
128 |
+
:,
|
129 |
+
hidden_size_per_attention_head : 2 * hidden_size_per_attention_head,
|
130 |
+
],
|
131 |
+
z[:, :, 2 * hidden_size_per_attention_head :],
|
132 |
+
)
|
133 |
+
x2, x1, v = (
|
134 |
+
x2.reshape(x2.shape[0], -1, x2.shape[-1]),
|
135 |
+
x1.reshape(x1.shape[0], -1, x1.shape[-1]),
|
136 |
+
v.reshape(v.shape[0], -1, v.shape[-1]),
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
x2, x1, v = z_pre.split([hidden_size, hidden_size, hidden_size], dim=1)
|
140 |
+
|
141 |
+
x1v = x1 * v
|
142 |
+
|
143 |
+
if use_flashfft and (L % 2) == 0: # only works with even L
|
144 |
+
y = fftconv_fn(
|
145 |
+
x1v.to(dtype=torch.bfloat16).contiguous(),
|
146 |
+
h.to(dtype=torch.float32),
|
147 |
+
)
|
148 |
+
X_s = None
|
149 |
+
|
150 |
+
elif long_fir_threshold is None:
|
151 |
+
H = torch.fft.rfft(h.to(dtype=torch.float32), n=fft_size) / fft_size
|
152 |
+
X_s = torch.fft.fft(x1v.to(dtype=torch.float32), n=fft_size)
|
153 |
+
X = X_s[..., : H.shape[-1]]
|
154 |
+
if len(z_pre.shape) > 3:
|
155 |
+
H = H.unsqueeze(1)
|
156 |
+
y = torch.fft.irfft(X * H, n=fft_size, norm="forward")[..., :L]
|
157 |
+
else:
|
158 |
+
assert h.shape[0] == 1, "batch size must be 1 for long_fir_threshold"
|
159 |
+
h = h[0][:, None] # rearrange to d, 1, l for depthwise conv1d
|
160 |
+
h = h[..., :long_fir_threshold]
|
161 |
+
y = F.conv1d(
|
162 |
+
x1v,
|
163 |
+
h.to(dtype=x1v.dtype),
|
164 |
+
stride=1,
|
165 |
+
groups=x1v.shape[1],
|
166 |
+
padding=h.shape[-1] - 1,
|
167 |
+
)[..., :L]
|
168 |
+
|
169 |
+
y = y.to(dtype=x1v.dtype)
|
170 |
+
y = (y + x1v * D.unsqueeze(-1)) * x2
|
171 |
+
if inference_params is not None:
|
172 |
+
if prefill_style == "fft":
|
173 |
+
self.prefill_via_modal_fft(
|
174 |
+
inference_params=inference_params,
|
175 |
+
x1v=x1v,
|
176 |
+
X_s=X_s,
|
177 |
+
L=L,
|
178 |
+
t=t,
|
179 |
+
poles=poles,
|
180 |
+
dims=dims,
|
181 |
+
layer_idx=layer_idx,
|
182 |
+
use_flashfft=use_flashfft,
|
183 |
+
)
|
184 |
+
|
185 |
+
elif prefill_style == "recurrence":
|
186 |
+
self.prefill_via_direct_recurrence(
|
187 |
+
inference_params=inference_params,
|
188 |
+
x1v=x1v,
|
189 |
+
L=L,
|
190 |
+
poles=poles,
|
191 |
+
)
|
192 |
+
|
193 |
+
else:
|
194 |
+
raise NotImplementedError
|
195 |
+
if self.low_mem_mode:
|
196 |
+
del z_pre, x2, x1, v, x1v, h
|
197 |
+
torch.cuda.empty_cache()
|
198 |
+
|
199 |
+
return y.permute(0, 2, 1)
|
200 |
+
|
201 |
+
def step_fir(self, u, fir_state, weight, bias=None):
|
202 |
+
"""Step the FIR filter.
|
203 |
+
|
204 |
+
Note:
|
205 |
+
`fir_state` contains the last `short_filter_length - 1` elements of `u`: `u_(L-2), u_{L-1), ...`
|
206 |
+
We assume dimensions of `short_filter_weight` to be `[d, 1, short_filter_len]` (SISO / multi SISO layout).
|
207 |
+
"""
|
208 |
+
h0, h = weight[..., 0, -1], weight[..., 0, :-1]
|
209 |
+
h0, h = h0[None], h[None]
|
210 |
+
y = h0 * u + torch.sum(fir_state * h, dim=-1) + bias
|
211 |
+
|
212 |
+
# update
|
213 |
+
fir_state = torch.roll(fir_state, -1, dims=2)
|
214 |
+
fir_state[..., -1] = u
|
215 |
+
return y, fir_state
|
216 |
+
|
217 |
+
def step_iir(self, x2, x1, v, D, residues, poles, iir_state, iir_groups=1):
|
218 |
+
x1v = x1 * v
|
219 |
+
|
220 |
+
residues, poles = (
|
221 |
+
torch.view_as_complex(residues.to(torch.float32)),
|
222 |
+
torch.view_as_complex(poles.to(torch.float32)),
|
223 |
+
)
|
224 |
+
# squeeze the dummy seqlen dimension
|
225 |
+
# D, state_dim, 1 -> 1, D, state_dim
|
226 |
+
residues, poles = residues[..., 0][None], poles[..., 0][None]
|
227 |
+
iir_state = poles * iir_state + x1v[..., None]
|
228 |
+
|
229 |
+
res_state = torch.sum(residues * iir_state, dim=-1).real
|
230 |
+
|
231 |
+
if iir_groups > 1:
|
232 |
+
raise NotImplementedError
|
233 |
+
y = x2 * res_state + D * x1v
|
234 |
+
|
235 |
+
return y, iir_state
|
236 |
+
|
237 |
+
def prefill_via_fir_caching(self, u, inference_params, L, *args, **kwargs):
|
238 |
+
"""Turns the IIR filter into a FIR and uses a cache for decoding."""
|
239 |
+
raise NotImplementedError(":)")
|
240 |
+
|
241 |
+
def prefill_via_direct_recurrence(self, inference_params, x1v, L, poles, *args, **kwargs):
|
242 |
+
"""
|
243 |
+
Compute the IIR state via explicit SSM recurrence (modal form)
|
244 |
+
"""
|
245 |
+
x1v_ = x1v[..., None, None] # b, d, l, sdim, reim
|
246 |
+
x1v_ = x1v_.repeat(1, 1, 1, 1, 2) # b, d, l, sdim, reim
|
247 |
+
|
248 |
+
state = x1v_[:, :, 0]
|
249 |
+
poles = poles[:, :, 0].to(dtype=torch.float32)
|
250 |
+
|
251 |
+
for i in range(L):
|
252 |
+
state = poles * state + x1v_[:, :, i]
|
253 |
+
inference_params.state_dict[self.layer_idx] = torch.view_as_complex(
|
254 |
+
state.to(dtype=torch.float32)
|
255 |
+
)
|
256 |
+
|
257 |
+
def prefill_via_hybrid_recurrence(
|
258 |
+
self, inference_params, u, log_poles, x1v_f_a, L, *args, **kwargs
|
259 |
+
):
|
260 |
+
"""
|
261 |
+
Compute the IIR state via hybrid recurrence-convolution over blocks
|
262 |
+
"""
|
263 |
+
raise NotImplementedError(":)")
|
264 |
+
|
265 |
+
def prefill_via_scan(self, u, inference_params=None, *args, **kwargs):
|
266 |
+
raise NotImplementedError
|
267 |
+
|
268 |
+
def prefill_via_canonical_fft(self, u, inference_params=None, *args, **kwargs):
|
269 |
+
"""
|
270 |
+
Compute the IIR state via a single FFT with the denominator of the SSM in companion form.
|
271 |
+
|
272 |
+
This is the most memory efficient "parallelized" prefilling method for Hyena.
|
273 |
+
|
274 |
+
From: https://arxiv.org/abs/2310.18780
|
275 |
+
"""
|
276 |
+
raise NotImplementedError(":)")
|
277 |
+
|
278 |
+
def prefill_via_modal_fft(
|
279 |
+
self,
|
280 |
+
inference_params,
|
281 |
+
x1v,
|
282 |
+
L,
|
283 |
+
poles,
|
284 |
+
t,
|
285 |
+
dims,
|
286 |
+
layer_idx,
|
287 |
+
X_s=None,
|
288 |
+
use_flashfft=False,
|
289 |
+
state_dtype=torch.complex64,
|
290 |
+
*args,
|
291 |
+
**kwargs,
|
292 |
+
):
|
293 |
+
"""
|
294 |
+
Compute the IIR state via a single FFT, using the poles of the SSM in modal form.
|
295 |
+
"""
|
296 |
+
# When the model has a long convolution derived from a SSM in modal form and prefill_style is "fft",
|
297 |
+
# we split the filter into poles and residues and reuse FFT computation on the input.
|
298 |
+
# This optimization is currently not supported when using flashfftconv.
|
299 |
+
hidden_size, _, _, state_size, hyena_filter_groups = dims
|
300 |
+
|
301 |
+
if use_flashfft:
|
302 |
+
# using real states
|
303 |
+
poles = poles.squeeze().reshape(poles.shape[0], -1)[..., None]
|
304 |
+
|
305 |
+
state_s = poles**t
|
306 |
+
if hyena_filter_groups > 1:
|
307 |
+
raise NotImplementedError
|
308 |
+
|
309 |
+
x1v = x1v[:, :, None].repeat(1, 1, 2 * state_size, 1)
|
310 |
+
x1v = x1v.reshape(x1v.shape[0], -1, x1v.shape[-1])
|
311 |
+
state_s = state_s[None]
|
312 |
+
|
313 |
+
state = self.fftconv_fn(
|
314 |
+
x1v.contiguous(),
|
315 |
+
state_s.to(dtype=torch.float32),
|
316 |
+
)
|
317 |
+
state = state[..., L - 1].reshape(x1v.shape[0], hidden_size, state_size, 2)
|
318 |
+
state = torch.view_as_complex(state.contiguous())
|
319 |
+
inference_params.state_dict[self.layer_idx] = state.to(dtype=state_dtype)
|
320 |
+
else:
|
321 |
+
assert X_s is not None
|
322 |
+
bs = x1v.shape[0]
|
323 |
+
fft_size = 2 * L
|
324 |
+
poles = torch.view_as_complex(poles.to(torch.float32))
|
325 |
+
state_s = poles**t
|
326 |
+
state_S = torch.fft.fft(state_s, n=fft_size).repeat(
|
327 |
+
bs, 1, 1, 1
|
328 |
+
) # B, D, state_dim, 2 * L
|
329 |
+
if hyena_filter_groups > 1:
|
330 |
+
state_S = state_S.repeat_interleave(hidden_size // hyena_filter_groups, 1)
|
331 |
+
state = torch.fft.ifft(X_s[..., None, :] * state_S, n=fft_size)
|
332 |
+
inference_params.state_dict[layer_idx] = state[..., L - 1].to(dtype=state_dtype)
|
333 |
+
|
334 |
+
def _compute_state(self, log_poles, u, t, L, *args, **kwargs):
|
335 |
+
"""
|
336 |
+
Compute the IIR state given an input `u` and log_poles of the modal system.
|
337 |
+
"""
|
338 |
+
bs = u.shape[0]
|
339 |
+
fft_size = 2 * L
|
340 |
+
U = torch.fft.rfft(u.to(torch.float32), n=fft_size)
|
341 |
+
fft_size = 2 * L
|
342 |
+
x = (log_poles * t).exp()
|
343 |
+
# [batch, hidden_size, state_dim, 2 * seqlen]
|
344 |
+
X = torch.fft.fft(x, n=fft_size).repeat(bs, 1, 1, 1)
|
345 |
+
state = torch.fft.ifft(U[..., None, :] * X, n=fft_size)[..., :L]
|
346 |
+
return state
|
layers.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Together
|
2 |
+
# This software is distributed under the terms of the Apache License, Version 2.0
|
3 |
+
# Author: Michael Poli
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import Tensor
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
|
11 |
+
class RMSNorm(torch.nn.Module):
|
12 |
+
def __init__(self, config):
|
13 |
+
super(RMSNorm, self).__init__()
|
14 |
+
self.eps, self.hidden_size = config.eps, config.hidden_size
|
15 |
+
self.scale = torch.nn.Parameter(torch.ones(self.hidden_size))
|
16 |
+
self.register_parameter("scale", self.scale)
|
17 |
+
self.use_flash_rmsnorm = config.get("use_flash_rmsnorm", False)
|
18 |
+
|
19 |
+
if self.use_flash_rmsnorm:
|
20 |
+
try:
|
21 |
+
from flash_attn.ops.rms_norm import rms_norm as rmsnorm_func
|
22 |
+
|
23 |
+
self.rmsnorm_func = rmsnorm_func
|
24 |
+
except:
|
25 |
+
raise ImportError(
|
26 |
+
"For `use_flash_rmsnorm`: `pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/layer_norm`"
|
27 |
+
)
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
if self.use_flash_rmsnorm:
|
31 |
+
return self.rmsnorm_func(x, self.scale, self.eps)
|
32 |
+
else:
|
33 |
+
y = x / (x.norm(2, dim=-1, keepdim=True) * self.hidden_size ** (-1.0 / 2) + self.eps)
|
34 |
+
return self.scale * y
|
35 |
+
|
36 |
+
|
37 |
+
class ParallelGatedMLP(nn.Module):
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
config,
|
41 |
+
):
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
multiple_of = config.get("inner_size_multiple_of", 64)
|
45 |
+
self.act = F.silu
|
46 |
+
|
47 |
+
self.multiple_of = multiple_of * config.model_parallel_size
|
48 |
+
|
49 |
+
inner_size = int(2 * config.hidden_size * 4 / 3)
|
50 |
+
inner_size = self.multiple_of * ((inner_size + self.multiple_of - 1) // self.multiple_of)
|
51 |
+
# if specified in the config, inner_size will be used instead of the calculated value
|
52 |
+
if config.get("inner_mlp_size", None) is not None:
|
53 |
+
inner_size = config.inner_mlp_size
|
54 |
+
|
55 |
+
self.l1 = nn.Linear(
|
56 |
+
in_features=config.hidden_size,
|
57 |
+
out_features=inner_size,
|
58 |
+
bias=False,
|
59 |
+
)
|
60 |
+
self.l2 = nn.Linear(
|
61 |
+
in_features=config.hidden_size,
|
62 |
+
out_features=inner_size,
|
63 |
+
bias=False,
|
64 |
+
)
|
65 |
+
self.l3 = nn.Linear(
|
66 |
+
in_features=inner_size,
|
67 |
+
out_features=config.hidden_size,
|
68 |
+
bias=False,
|
69 |
+
)
|
70 |
+
|
71 |
+
def forward(self, z):
|
72 |
+
z1, z2 = self.l1(z), self.l2(z)
|
73 |
+
if type(z1) == tuple:
|
74 |
+
z1 = z1[0]
|
75 |
+
if type(z2) == tuple:
|
76 |
+
z2 = z2[0]
|
77 |
+
y = self.l3(self.act(z1) * z2)
|
78 |
+
return y[0] if type(y) == tuple else y
|
79 |
+
|
80 |
+
|
81 |
+
class Embedding(nn.Module):
|
82 |
+
_train_dtype = "bf16"
|
83 |
+
|
84 |
+
def __init__(self, config):
|
85 |
+
super().__init__()
|
86 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
|
87 |
+
|
88 |
+
def embed(self, input_ids, position_ids=None, tokentype_ids=None):
|
89 |
+
embeddings = self.word_embeddings(input_ids)
|
90 |
+
return embeddings
|
91 |
+
|
92 |
+
def unembed(self, u):
|
93 |
+
weight = self.word_embeddings.weight
|
94 |
+
return torch.matmul(u, weight)
|
95 |
+
|
96 |
+
|
97 |
+
class VocabParallelEmbedding(nn.Embedding):
|
98 |
+
"Adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/embedding.py"
|
99 |
+
|
100 |
+
def __init__(self, config):
|
101 |
+
vocab_size, process_group, padding_idx = (
|
102 |
+
config.vocab_size,
|
103 |
+
config.get("process_group", None),
|
104 |
+
config.get("padding_idx", None),
|
105 |
+
)
|
106 |
+
self.process_group = process_group
|
107 |
+
if process_group is not None:
|
108 |
+
world_size = torch.distributed.get_world_size(process_group)
|
109 |
+
if vocab_size % world_size != 0:
|
110 |
+
raise ValueError(
|
111 |
+
f"vocab_size ({vocab_size}) must be divisible by " f"world_size ({world_size})"
|
112 |
+
)
|
113 |
+
if world_size > 1 and padding_idx is not None:
|
114 |
+
raise RuntimeError("ParallelEmbedding does not support padding_idx")
|
115 |
+
else:
|
116 |
+
world_size = 1
|
117 |
+
super().__init__(
|
118 |
+
vocab_size // world_size,
|
119 |
+
embedding_dim=config.hidden_size,
|
120 |
+
padding_idx=padding_idx,
|
121 |
+
)
|
122 |
+
|
123 |
+
def embed(self, x: Tensor) -> Tensor:
|
124 |
+
if self.process_group is None:
|
125 |
+
return self.forward(x)
|
126 |
+
else:
|
127 |
+
rank = torch.distributed.get_rank(self.process_group)
|
128 |
+
vocab_size = self.num_embeddings
|
129 |
+
vocab_start_index, vocab_end_index = (
|
130 |
+
rank * vocab_size,
|
131 |
+
(rank + 1) * vocab_size,
|
132 |
+
)
|
133 |
+
# Create a mask of valid vocab ids (1 means it needs to be masked).
|
134 |
+
input_ids_mask = (x < vocab_start_index) | (x >= vocab_end_index)
|
135 |
+
x = x - vocab_start_index
|
136 |
+
x[input_ids_mask] = 0
|
137 |
+
embeddings = self.forward(x)
|
138 |
+
embeddings[input_ids_mask] = 0.0
|
139 |
+
# Reduce to the global process group
|
140 |
+
torch.distributed.all_reduce(embeddings, group=self.process_group)
|
141 |
+
return embeddings
|
142 |
+
|
143 |
+
def unembed(self, u: Tensor) -> Tensor:
|
144 |
+
if self.process_group is None:
|
145 |
+
return u @ self.weight.T
|
146 |
+
else:
|
147 |
+
raise NotImplementedError
|
model.py
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Together
|
2 |
+
# This software is distributed under the terms of the Apache License, Version 2.0
|
3 |
+
# Author: Michael Poli
|
4 |
+
# Note: MP and PP utilities are removed for ease of use and editing.
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from .utils import print_rank_0, column_split
|
11 |
+
from .cache import InferenceParams, RecurrentInferenceParams
|
12 |
+
from .engine import HyenaInferenceEngine
|
13 |
+
from .layers import (
|
14 |
+
RMSNorm,
|
15 |
+
ParallelGatedMLP,
|
16 |
+
VocabParallelEmbedding,
|
17 |
+
)
|
18 |
+
|
19 |
+
try:
|
20 |
+
from flash_attn.modules.mha import MHA
|
21 |
+
except ImportError:
|
22 |
+
"flash_attn not installed"
|
23 |
+
|
24 |
+
|
25 |
+
class AttentionBlock(nn.Module):
|
26 |
+
def __init__(self, config, layer_idx) -> None:
|
27 |
+
super().__init__()
|
28 |
+
self.config = config
|
29 |
+
self.pre_norm, self.post_norm = RMSNorm(config), RMSNorm(config)
|
30 |
+
self.layer_idx = layer_idx
|
31 |
+
self.proj_groups = config.get("proj_groups", 1)
|
32 |
+
dtype = config.get("attn_block_dtype", torch.bfloat16)
|
33 |
+
mlp_dtype = config.get("mlp_dtype", torch.bfloat16)
|
34 |
+
self.num_attention_heads = config.num_attention_heads
|
35 |
+
self.hidden_size_per_attention_head = config.hidden_size // config.num_attention_heads
|
36 |
+
|
37 |
+
self.counter = 0
|
38 |
+
self.inner_mha_cls = MHA(
|
39 |
+
embed_dim=config.hidden_size,
|
40 |
+
num_heads=config.num_attention_heads,
|
41 |
+
num_heads_kv=config.num_attention_heads // self.proj_groups,
|
42 |
+
rotary_emb_dim=config.hidden_size // config.num_attention_heads,
|
43 |
+
qkv_proj_bias=config.get("qkv_proj_bias", True),
|
44 |
+
rotary_emb_base=config.get("rotary_emb_base", 10000),
|
45 |
+
causal=True,
|
46 |
+
layer_idx=layer_idx,
|
47 |
+
out_proj_bias=config.get("mha_out_proj_bias", True),
|
48 |
+
use_flash_attn=self.config.use_flash_attn,
|
49 |
+
).to(dtype=dtype)
|
50 |
+
|
51 |
+
if self.config.get("smeared_gqa", False):
|
52 |
+
self.inner_mha_cls.num_heads_kv = self.inner_mha_cls.num_heads
|
53 |
+
self.inner_mha_cls.rotary_emb.register_buffer(
|
54 |
+
"inv_freq", self.inner_mha_cls.rotary_emb.inv_freq
|
55 |
+
)
|
56 |
+
|
57 |
+
self.mlp = ParallelGatedMLP(config).to(dtype=mlp_dtype)
|
58 |
+
|
59 |
+
def forward(self, u, inference_params=None, padding_mask=None, *args, **kwargs):
|
60 |
+
if (
|
61 |
+
type(padding_mask) == torch.Tensor
|
62 |
+
): # workaround for masking bug in FA. This works because Wqkv does not have bias
|
63 |
+
# and attention scores will be also automatically zeroed.
|
64 |
+
u = u * padding_mask[..., None]
|
65 |
+
|
66 |
+
u = (
|
67 |
+
self.inner_mha_cls(
|
68 |
+
self.pre_norm(u),
|
69 |
+
inference_params=inference_params,
|
70 |
+
)
|
71 |
+
+ u
|
72 |
+
)
|
73 |
+
if type(padding_mask) == torch.Tensor: # guard against bias
|
74 |
+
u = u * padding_mask[..., None]
|
75 |
+
u = self.mlp(self.post_norm(u)) + u
|
76 |
+
return u, None
|
77 |
+
|
78 |
+
|
79 |
+
class ParallelHyenaFilter(nn.Module):
|
80 |
+
def __init__(self, config, layer_idx) -> None:
|
81 |
+
super().__init__()
|
82 |
+
self.config = config
|
83 |
+
self.layer_idx = layer_idx
|
84 |
+
self.hyena_filter_groups = config.get("hyena_filter_groups", self.config.hidden_size)
|
85 |
+
|
86 |
+
self.use_flashfft = config.get("use_flashfft", False)
|
87 |
+
self.state_size = config.state_size
|
88 |
+
self.hidden_size = config.hidden_size
|
89 |
+
self.num_filters = config.num_filters
|
90 |
+
self.inference_mode = config.get("inference_mode", True)
|
91 |
+
self.counter = 0
|
92 |
+
self.column_split_hyena = config.get("column_split_hyena", True)
|
93 |
+
|
94 |
+
assert self.hidden_size % self.num_filters == 0 and self.num_filters <= self.hidden_size
|
95 |
+
|
96 |
+
self.D = nn.Parameter(torch.zeros(self.hidden_size))
|
97 |
+
|
98 |
+
# attention heads are not used except to split post short_filter
|
99 |
+
# projections in the same way as the checkpoint
|
100 |
+
self.num_attention_heads = config.num_attention_heads
|
101 |
+
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
102 |
+
|
103 |
+
# after preprocessing here we can save the new checkpoint
|
104 |
+
self.short_filter_length = config.short_filter_length
|
105 |
+
self.short_filter_weight = nn.Parameter(
|
106 |
+
torch.randn(3 * config.hidden_size, 1, config.short_filter_length)
|
107 |
+
)
|
108 |
+
self.short_filter_bias = (
|
109 |
+
nn.Parameter(torch.randn(3 * config.hidden_size)) if config.short_filter_bias else None
|
110 |
+
)
|
111 |
+
|
112 |
+
self.engine = HyenaInferenceEngine(layer_idx=layer_idx)
|
113 |
+
self.use_flash_depthwise = config.get("use_flash_depthwise", False)
|
114 |
+
self.data_dtype = None
|
115 |
+
|
116 |
+
if self.use_flash_depthwise:
|
117 |
+
self.fir_fn = FlashDepthwiseConv1d(
|
118 |
+
channels=3 * self.hidden_size,
|
119 |
+
kernel_size=self.short_filter_length,
|
120 |
+
padding=self.short_filter_length - 1,
|
121 |
+
weights=self.short_filter_weight,
|
122 |
+
bias=self.short_filter_bias,
|
123 |
+
device=None,
|
124 |
+
dtype=self.config.get("depthwise_dtype", torch.bfloat16),
|
125 |
+
)
|
126 |
+
else:
|
127 |
+
self.fir_fn = F.conv1d
|
128 |
+
|
129 |
+
self.fftconv_fn = None
|
130 |
+
self.long_fir_threshold = config.get("long_fir_threshold", None)
|
131 |
+
if self.long_fir_threshold is not None:
|
132 |
+
assert (
|
133 |
+
self.use_flashfft is False
|
134 |
+
), "long_fir_threshold not compatible with fused flashfft"
|
135 |
+
|
136 |
+
self.num_systems = self.hidden_size // self.hyena_filter_groups
|
137 |
+
self.poles = nn.Parameter(torch.randn(self.num_systems, self.state_size, 1, 2))
|
138 |
+
self.residues = nn.Parameter(torch.randn(self.num_systems, self.state_size, 1, 2))
|
139 |
+
self.h = None
|
140 |
+
|
141 |
+
def forward(self, u, inference_params=None, padding_mask=None, *args, **kwargs):
|
142 |
+
if (
|
143 |
+
inference_params is not None
|
144 |
+
and self.layer_idx in inference_params.fir_state_dict.keys()
|
145 |
+
):
|
146 |
+
return self.sequential_forward(u, inference_params)
|
147 |
+
|
148 |
+
else:
|
149 |
+
return self.parallel_forward(u, inference_params, padding_mask)
|
150 |
+
|
151 |
+
def parallel_forward(self, u, inference_params=None, padding_mask=None):
|
152 |
+
L = u.shape[1]
|
153 |
+
z_pre, fir_state = self.engine.parallel_fir(
|
154 |
+
self.fir_fn,
|
155 |
+
u,
|
156 |
+
self.short_filter_weight,
|
157 |
+
self.short_filter_bias,
|
158 |
+
L,
|
159 |
+
fir_length=self.short_filter_length,
|
160 |
+
inference_params=inference_params,
|
161 |
+
padding_mask=padding_mask,
|
162 |
+
)
|
163 |
+
if inference_params:
|
164 |
+
inference_params.fir_state_dict[self.layer_idx] = fir_state
|
165 |
+
|
166 |
+
if self.h is None:
|
167 |
+
h, filter_dtype, poles, residues = self.compute_filter(L, u.device)
|
168 |
+
else:
|
169 |
+
h = self.h
|
170 |
+
filter_dtype = self.h.dtype
|
171 |
+
|
172 |
+
if self.hyena_filter_groups > 1:
|
173 |
+
h = h.repeat_interleave(self.hidden_size // self.hyena_filter_groups, 1)
|
174 |
+
|
175 |
+
# if inference_params is not None, we plan to perform generation:
|
176 |
+
# prefilling for the IIR portion of the filter is handled by the engine.
|
177 |
+
dims = (
|
178 |
+
self.hidden_size,
|
179 |
+
self.num_attention_heads,
|
180 |
+
self.hidden_size_per_attention_head,
|
181 |
+
self.state_size,
|
182 |
+
self.hyena_filter_groups,
|
183 |
+
)
|
184 |
+
y = self.engine.parallel_iir(
|
185 |
+
z_pre,
|
186 |
+
h,
|
187 |
+
self.D,
|
188 |
+
L,
|
189 |
+
t=self.t,
|
190 |
+
poles=self.poles,
|
191 |
+
dims=dims,
|
192 |
+
inference_params=inference_params,
|
193 |
+
layer_idx=self.layer_idx,
|
194 |
+
prefill_style=self.config.get("prefill_style", "fft"),
|
195 |
+
use_flashfft=self.use_flashfft,
|
196 |
+
fftconv_fn=self.fftconv_fn,
|
197 |
+
column_split_hyena=self.column_split_hyena,
|
198 |
+
long_fir_threshold=self.long_fir_threshold,
|
199 |
+
padding_mask=padding_mask,
|
200 |
+
)
|
201 |
+
|
202 |
+
return y, inference_params
|
203 |
+
|
204 |
+
def sequential_forward(self, u, inference_params):
|
205 |
+
if self.data_dtype is None:
|
206 |
+
self.data_dtype = u.dtype
|
207 |
+
if len(u.shape) > 2:
|
208 |
+
u = u[:, -1]
|
209 |
+
|
210 |
+
fir_state, iir_state = (
|
211 |
+
inference_params.fir_state_dict[self.layer_idx],
|
212 |
+
inference_params.state_dict[self.layer_idx],
|
213 |
+
)
|
214 |
+
|
215 |
+
z_pre, fir_state = self.engine.step_fir(
|
216 |
+
u, fir_state, weight=self.short_filter_weight, bias=self.short_filter_bias
|
217 |
+
)
|
218 |
+
x2, x1, v = (
|
219 |
+
column_split(z_pre, self.num_attention_heads, self.hidden_size_per_attention_head)
|
220 |
+
if self.column_split_hyena
|
221 |
+
else z_pre.split([self.hidden_size, self.hidden_size, self.hidden_size], dim=1)
|
222 |
+
)
|
223 |
+
|
224 |
+
y, iir_state = self.engine.step_iir(
|
225 |
+
x2,
|
226 |
+
x1,
|
227 |
+
v,
|
228 |
+
self.D,
|
229 |
+
self.residues,
|
230 |
+
self.poles,
|
231 |
+
iir_state,
|
232 |
+
iir_groups=self.hyena_filter_groups,
|
233 |
+
)
|
234 |
+
|
235 |
+
inference_params.fir_state_dict[self.layer_idx] = fir_state
|
236 |
+
inference_params.state_dict[self.layer_idx] = iir_state
|
237 |
+
y = y.to(dtype=self.data_dtype)
|
238 |
+
return y[:, None], inference_params
|
239 |
+
|
240 |
+
def update_time(self, L, device):
|
241 |
+
"""
|
242 |
+
Set [0, 1, ..., L-1] where L is the length of the current batch of inputs.
|
243 |
+
If L is greater than the length of the previous batch, then the time vector is
|
244 |
+
reinitialized. Otherwise, the time vector is truncated from cache.
|
245 |
+
"""
|
246 |
+
if not hasattr(self, "t"):
|
247 |
+
self.t = torch.arange(L, device=device)[None, None]
|
248 |
+
elif self.t.shape[-1] < L:
|
249 |
+
self.t = torch.arange(L, device=device)[None, None]
|
250 |
+
else:
|
251 |
+
self.t = self.t[..., :L]
|
252 |
+
|
253 |
+
def compute_filter(self, L, device):
|
254 |
+
self.update_time(L, device)
|
255 |
+
filter_dtype = torch.float32
|
256 |
+
residues, log_poles = (
|
257 |
+
torch.view_as_complex(self.residues.to(filter_dtype)),
|
258 |
+
torch.view_as_complex(self.poles.to(filter_dtype)).log(),
|
259 |
+
)
|
260 |
+
h = (residues * (log_poles * self.t).exp()).real.sum(1)[None]
|
261 |
+
return h, filter_dtype, log_poles, residues
|
262 |
+
|
263 |
+
|
264 |
+
class ParallelGatedConvBlock(nn.Module):
|
265 |
+
def __init__(self, config, layer_idx) -> None:
|
266 |
+
super().__init__()
|
267 |
+
self.config = config
|
268 |
+
self.layer_idx = layer_idx
|
269 |
+
dtype = config.get("hyena_block_dtype", torch.float32)
|
270 |
+
mlp_dtype = config.get("mlp_dtype", torch.bfloat16)
|
271 |
+
self.pre_norm, self.post_norm = RMSNorm(config).to(dtype=dtype), RMSNorm(config).to(
|
272 |
+
dtype=dtype
|
273 |
+
)
|
274 |
+
self.filter = ParallelHyenaFilter(config, layer_idx).to(dtype=dtype)
|
275 |
+
self.projections = nn.Linear(config.hidden_size, 3 * config.hidden_size)
|
276 |
+
self.out_filter_dense = nn.Linear(config.hidden_size, config.hidden_size).to(dtype)
|
277 |
+
self.mlp = ParallelGatedMLP(config).to(dtype=mlp_dtype)
|
278 |
+
|
279 |
+
def forward(self, u, inference_params=None, padding_mask=None, *args, **kwargs):
|
280 |
+
z = self.projections(self.pre_norm(u))
|
281 |
+
if type(padding_mask) == torch.Tensor: # guard against bias
|
282 |
+
z = z * padding_mask[..., None]
|
283 |
+
|
284 |
+
z, inference_params = self.filter(
|
285 |
+
z, inference_params=inference_params, padding_mask=padding_mask
|
286 |
+
)
|
287 |
+
|
288 |
+
u = self.out_filter_dense(z) + u
|
289 |
+
if type(padding_mask) == torch.Tensor: # guard against bias
|
290 |
+
u = u * padding_mask[..., None]
|
291 |
+
u = self.mlp(self.post_norm(u)) + u
|
292 |
+
return u, inference_params
|
293 |
+
|
294 |
+
|
295 |
+
def get_block(config, layer_idx, flash_fft=None):
|
296 |
+
if layer_idx in config.attn_layer_idxs:
|
297 |
+
return AttentionBlock(config, layer_idx)
|
298 |
+
elif layer_idx in config.hyena_layer_idxs:
|
299 |
+
block = ParallelGatedConvBlock(config, layer_idx)
|
300 |
+
if config.get("use_flashfft", "False"):
|
301 |
+
block.filter.fftconv_fn = flash_fft
|
302 |
+
return block
|
303 |
+
else:
|
304 |
+
raise NotImplementedError
|
305 |
+
|
306 |
+
|
307 |
+
class StripedHyena(nn.Module):
|
308 |
+
def __init__(self, config):
|
309 |
+
super().__init__()
|
310 |
+
self.config = config
|
311 |
+
self.embedding_layer = VocabParallelEmbedding(config)
|
312 |
+
self.norm = RMSNorm(config) if config.get("final_norm", True) else None
|
313 |
+
self.unembed = self.emb if config.tie_embeddings else VocabParallelEmbedding(config)
|
314 |
+
self.gradient_checkpointing = False
|
315 |
+
|
316 |
+
if config.get("use_flashfft", "False"):
|
317 |
+
raise NotImplementedError("Please use standalone SH code for other custom kernels")
|
318 |
+
else:
|
319 |
+
self.flash_fft = None
|
320 |
+
|
321 |
+
self.blocks = nn.ModuleList(
|
322 |
+
get_block(config, layer_idx, flash_fft=self.flash_fft)
|
323 |
+
for layer_idx in range(config.num_layers)
|
324 |
+
)
|
325 |
+
|
326 |
+
def forward(self, x, inference_params_dict=None, padding_mask=None):
|
327 |
+
L = x.shape[1]
|
328 |
+
x = self.embedding_layer.embed(x)
|
329 |
+
if inference_params_dict is not None:
|
330 |
+
x, inference_params_dict_out = self.stateful_forward(
|
331 |
+
x,
|
332 |
+
inference_params_dict=inference_params_dict,
|
333 |
+
)
|
334 |
+
else:
|
335 |
+
x, inference_params_dict_out = self.stateless_forward(x, padding_mask=padding_mask)
|
336 |
+
x = self.norm(x)
|
337 |
+
x = self.unembed.unembed(x)
|
338 |
+
return x, inference_params_dict_out
|
339 |
+
|
340 |
+
def stateful_forward(self, x, inference_params_dict=None):
|
341 |
+
for block_idx, block in enumerate(self.blocks):
|
342 |
+
block_name = "mha" if block_idx in self.config.attn_layer_idxs else "hyena"
|
343 |
+
inference_params = inference_params_dict[block_name]
|
344 |
+
x, _ = block(x, inference_params=inference_params)
|
345 |
+
|
346 |
+
return x, inference_params_dict
|
347 |
+
|
348 |
+
def stateless_forward(self, x, padding_mask=None):
|
349 |
+
if type(padding_mask) == torch.Tensor:
|
350 |
+
x = x * padding_mask[..., None]
|
351 |
+
|
352 |
+
for block_idx, block in enumerate(self.blocks):
|
353 |
+
if self.gradient_checkpointing and self.training:
|
354 |
+
def create_custom_forward(module):
|
355 |
+
def custom_forward(*inputs):
|
356 |
+
# None for past_key_value
|
357 |
+
return module(*inputs, inference_params=None, padding_mask=padding_mask)
|
358 |
+
|
359 |
+
return custom_forward
|
360 |
+
|
361 |
+
x, _ = checkpoint(create_custom_forward(block), x, use_reentrant=False)
|
362 |
+
else:
|
363 |
+
x, _ = block(x, inference_params=None, padding_mask=padding_mask)
|
364 |
+
return x, None
|
365 |
+
|
366 |
+
def initialize_inference_params(self):
|
367 |
+
print_rank_0("Initializing inference params...")
|
368 |
+
inference_params_dict = {
|
369 |
+
"mha": InferenceParams(
|
370 |
+
max_seqlen=self.config.get("max_seqlen", 8192),
|
371 |
+
max_batch_size=self.config.get("max_batch_size", 1),
|
372 |
+
seqlen_offset=0,
|
373 |
+
),
|
374 |
+
"hyena": RecurrentInferenceParams(
|
375 |
+
fir_filter_length=self.config.short_filter_length,
|
376 |
+
state_dim=self.config.state_size,
|
377 |
+
seqlen_offset=0,
|
378 |
+
),
|
379 |
+
}
|
380 |
+
return inference_params_dict
|
381 |
+
|
382 |
+
def precompute_filters(self, L, device):
|
383 |
+
for block_idx, block in enumerate(self.blocks):
|
384 |
+
if type(block) == ParallelGatedConvBlock:
|
385 |
+
if type(block.filter) == ParallelHyenaFilter:
|
386 |
+
L = block.filter.long_fir_threshold or L
|
387 |
+
print_rank_0(f"Precomputing filters, L={L}...")
|
388 |
+
|
389 |
+
filter_dtype = torch.float16 if L >= 2048 else torch.float32
|
390 |
+
|
391 |
+
block.filter._set_time(L, device)
|
392 |
+
residues, poles = (
|
393 |
+
torch.view_as_complex(block.filter.residues.to(torch.float16)),
|
394 |
+
torch.view_as_complex(block.filter.poles.to(torch.float16)),
|
395 |
+
)
|
396 |
+
|
397 |
+
block.filter.h = (residues * poles**block.filter.t).real.sum(1)[None]
|
398 |
+
block.filter.h = block.filter.h.to(dtype=filter_dtype)
|
399 |
+
|
400 |
+
def load_poles_residues(self, path):
|
401 |
+
"Load different poles and residues for each layer."
|
402 |
+
for block_idx, block in enumerate(self.blocks):
|
403 |
+
if type(block) == ParallelGatedConvBlock:
|
404 |
+
if type(block.filter) == ParallelHyenaFilter:
|
405 |
+
print(f"Loading poles and residues for block {block_idx}")
|
406 |
+
poles = torch.load(path + f"/approx_poles_{block_idx+1}.pt", map_location="cpu")
|
407 |
+
poles = torch.view_as_real(poles)
|
408 |
+
residues = torch.load(
|
409 |
+
path + f"/approx_residues_{block_idx+1}.pt", map_location="cpu"
|
410 |
+
)
|
411 |
+
residues = torch.view_as_real(residues)
|
412 |
+
poles = poles.permute(1, 0, 2).unsqueeze(-2)
|
413 |
+
residues = residues.permute(1, 0, 2).unsqueeze(-2)
|
414 |
+
|
415 |
+
block.filter.poles = nn.Parameter(poles)
|
416 |
+
block.filter.residues = nn.Parameter(residues)
|
417 |
+
|
418 |
+
def to_bfloat16_except_poles_residues(self):
|
419 |
+
"""Convert all parameters to bfloat16 except for the poles and residues.
|
420 |
+
|
421 |
+
Particularly important for longer prompts.
|
422 |
+
"""
|
423 |
+
for k, p in self.named_parameters():
|
424 |
+
if "poles" not in k and "residues" not in k:
|
425 |
+
p.data = p.data.to(torch.bfloat16)
|
modeling_hyena.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""StripedHyena custom code port for the Hugging Face Hub"""
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from .configuration_hyena import StripedHyenaConfig
|
7 |
+
from transformers import PreTrainedModel
|
8 |
+
from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
|
9 |
+
from transformers.utils import logging
|
10 |
+
from typing import Optional, Tuple, Union
|
11 |
+
from .model import StripedHyena
|
12 |
+
from .utils import dotdict
|
13 |
+
from .cache import InferenceParams
|
14 |
+
from .engine import HyenaInferenceEngine
|
15 |
+
from .layers import RMSNorm
|
16 |
+
from .utils import dotdict, column_split
|
17 |
+
|
18 |
+
logger = logging.get_logger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
class StripedHyenaPreTrainedModel(PreTrainedModel):
|
22 |
+
config_class = StripedHyenaConfig
|
23 |
+
base_model_prefix = "sh"
|
24 |
+
supports_gradient_checkpointing = False
|
25 |
+
_no_split_modules = ["AttentionBlock", "ParallelGatedConvBlock"]
|
26 |
+
_skip_keys_device_placement = "past_key_values"
|
27 |
+
_keys_to_ignore_on_load_missing = [r"freq"]
|
28 |
+
_keys_to_ignore_on_load_unexpected = [r"fftconv", r"twiddle_factors"]
|
29 |
+
_supports_flash_attn_2 = True
|
30 |
+
|
31 |
+
|
32 |
+
class StripedHyenaModelForCausalLM(StripedHyenaPreTrainedModel):
|
33 |
+
supports_gradient_checkpointing = True
|
34 |
+
|
35 |
+
def __init__(self, config, **kwargs):
|
36 |
+
super().__init__(config, **kwargs)
|
37 |
+
model_config = dotdict(config.to_dict())
|
38 |
+
self.backbone = StripedHyena(model_config)
|
39 |
+
self.backbone.gradient_checkpointing = False
|
40 |
+
self.config = config
|
41 |
+
vocab_size = config.vocab_size
|
42 |
+
if vocab_size % config.make_vocab_size_divisible_by != 0:
|
43 |
+
vocab_size += config.make_vocab_size_divisible_by - (
|
44 |
+
vocab_size % config.make_vocab_size_divisible_by
|
45 |
+
)
|
46 |
+
self.vocab_size = vocab_size
|
47 |
+
self.post_init()
|
48 |
+
self.force_dtype()
|
49 |
+
|
50 |
+
def force_dtype(self):
|
51 |
+
self.backbone.to_bfloat16_except_poles_residues()
|
52 |
+
|
53 |
+
def _set_gradient_checkpointing(self, enable, gradient_checkpointing_func):
|
54 |
+
self.backbone.gradient_checkpointing = enable
|
55 |
+
|
56 |
+
def get_input_embeddings(self):
|
57 |
+
return self.backbone.embedding_layer
|
58 |
+
|
59 |
+
def forward(
|
60 |
+
self,
|
61 |
+
input_ids: torch.LongTensor = None,
|
62 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
63 |
+
labels: Optional[torch.LongTensor] = None,
|
64 |
+
use_cache: Optional[bool] = None,
|
65 |
+
output_attentions: Optional[bool] = None,
|
66 |
+
output_hidden_states: Optional[bool] = None,
|
67 |
+
past_key_values=None,
|
68 |
+
return_dict: Optional[bool] = None,
|
69 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
70 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
71 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
72 |
+
|
73 |
+
if use_cache:
|
74 |
+
if self.backbone.gradient_checkpointing and self.backbone.training:
|
75 |
+
logger.warning_once(
|
76 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
77 |
+
)
|
78 |
+
use_cache = False
|
79 |
+
elif labels is not None:
|
80 |
+
logger.warning_once(
|
81 |
+
"`use_cache=True` is incompatible with loss calculation. Setting `use_cache=False`..."
|
82 |
+
)
|
83 |
+
use_cache = False
|
84 |
+
|
85 |
+
inputs = input_ids
|
86 |
+
if use_cache:
|
87 |
+
if past_key_values is None:
|
88 |
+
past_key_values = self.backbone.initialize_inference_params()
|
89 |
+
|
90 |
+
batch_size = input_ids.shape[0]
|
91 |
+
past_key_values["mha"].max_batch_size = batch_size
|
92 |
+
past_key_values["hyena"].max_batch_size = batch_size
|
93 |
+
else:
|
94 |
+
seqlen_offset = past_key_values["mha"].seqlen_offset
|
95 |
+
if seqlen_offset == 0:
|
96 |
+
# second loop through generate will have prompt_len + 1 as seqlen
|
97 |
+
seqlen_offset = input_ids.shape[-1] - 1
|
98 |
+
past_key_values["hyena"].seqlen_offset = seqlen_offset
|
99 |
+
past_key_values["mha"].seqlen_offset = seqlen_offset
|
100 |
+
else:
|
101 |
+
past_key_values["mha"].seqlen_offset += 1
|
102 |
+
past_key_values["hyena"].seqlen_offset += 1
|
103 |
+
|
104 |
+
inputs = input_ids[
|
105 |
+
:,
|
106 |
+
-1:,
|
107 |
+
]
|
108 |
+
|
109 |
+
logits, past_key_values = self.backbone(
|
110 |
+
inputs,
|
111 |
+
padding_mask=attention_mask,
|
112 |
+
inference_params_dict=past_key_values if use_cache else None,
|
113 |
+
)
|
114 |
+
|
115 |
+
loss = None
|
116 |
+
if labels is not None:
|
117 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
118 |
+
shift_labels = labels[..., 1:].contiguous()
|
119 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
120 |
+
shift_labels = shift_labels.view(-1)
|
121 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
122 |
+
loss = F.cross_entropy(shift_logits, shift_labels)
|
123 |
+
|
124 |
+
if return_dict:
|
125 |
+
return CausalLMOutputWithPast(
|
126 |
+
logits=logits,
|
127 |
+
hidden_states=None,
|
128 |
+
past_key_values=past_key_values if use_cache else None,
|
129 |
+
loss=loss,
|
130 |
+
)
|
131 |
+
else:
|
132 |
+
return logits
|
133 |
+
|
134 |
+
@classmethod
|
135 |
+
def can_generate(cls) -> bool:
|
136 |
+
return True
|
137 |
+
|
138 |
+
def prepare_inputs_for_generation(
|
139 |
+
self, input_ids, attention_mask=None, past_key_values=None, **kwargs
|
140 |
+
):
|
141 |
+
return {
|
142 |
+
"input_ids": input_ids,
|
143 |
+
"attention_mask": attention_mask,
|
144 |
+
"past_key_values": past_key_values,
|
145 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "</s>"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"unk_token": "</s>",
|
3 |
+
"bos_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"add_prefix_space": false,
|
6 |
+
"tokenizer_class": "LlamaTokenizer"
|
7 |
+
}
|
utils.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def column_split(x, num_heads, head_size):
|
5 |
+
"""Split a tensor with `num_heads` alongside the head dimension, instead of
|
6 |
+
across heads. Fixed to three projections
|
7 |
+
"""
|
8 |
+
|
9 |
+
x_reshaped = x.reshape(
|
10 |
+
x.shape[0],
|
11 |
+
num_heads,
|
12 |
+
3 * head_size,
|
13 |
+
)
|
14 |
+
|
15 |
+
x2, x1, v = (
|
16 |
+
x_reshaped[:, :, :head_size],
|
17 |
+
x_reshaped[
|
18 |
+
:,
|
19 |
+
:,
|
20 |
+
head_size : 2 * head_size,
|
21 |
+
],
|
22 |
+
x_reshaped[:, :, 2 * head_size :],
|
23 |
+
)
|
24 |
+
x2, x1, v = (
|
25 |
+
x2.reshape(x2.shape[0], -1),
|
26 |
+
x1.reshape(x1.shape[0], -1),
|
27 |
+
v.reshape(v.shape[0], -1),
|
28 |
+
)
|
29 |
+
return x2, x1, v
|
30 |
+
|
31 |
+
|
32 |
+
def get_init_from_string(init_str):
|
33 |
+
if type(init_str) == str:
|
34 |
+
if init_str == "torch.nn.init.zeros_":
|
35 |
+
return torch.nn.init.zeros_
|
36 |
+
elif init_str == "torch.nn.init.xavier_uniform_":
|
37 |
+
return torch.nn.init.xavier_uniform_
|
38 |
+
elif init_str == "torch.nn.init.xavier_normal_":
|
39 |
+
return torch.nn.init.xavier_normal_
|
40 |
+
else:
|
41 |
+
raise ValueError(f"Unrecognized init {init_str}")
|
42 |
+
|
43 |
+
|
44 |
+
def print_rank_0(message, debug=False, end="\n"):
|
45 |
+
"""Print from rank 0 only."""
|
46 |
+
if torch.distributed.is_initialized():
|
47 |
+
if torch.distributed.get_rank() == 0:
|
48 |
+
print(message, flush=True, end=end)
|
49 |
+
else:
|
50 |
+
print(message, flush=True, end=end)
|
51 |
+
|
52 |
+
|
53 |
+
class dotdict(dict):
|
54 |
+
"""dot.notation access to dictionary attributes"""
|
55 |
+
|
56 |
+
__getattr__ = dict.get
|
57 |
+
__setattr__ = dict.__setitem__
|
58 |
+
__delattr__ = dict.__delitem__
|
59 |
+
|
60 |
+
|
61 |
+
def ensure_divisibility(numerator, denominator):
|
62 |
+
"""Ensure that numerator is divisible by the denominator."""
|
63 |
+
assert numerator % denominator == 0, "{} is not divisible by {}".format(numerator, denominator)
|
64 |
+
|
65 |
+
|
66 |
+
def divide(numerator, denominator):
|
67 |
+
"""Ensure that numerator is divisible by the denominator and return
|
68 |
+
the division value."""
|
69 |
+
ensure_divisibility(numerator, denominator)
|
70 |
+
return numerator // denominator
|
71 |
+
|
72 |
+
|
73 |
+
class VocabUtility:
|
74 |
+
"""Split the vocabulary into `world_size` chunks amd return the
|
75 |
+
first and last index of the vocabulary belonging to the `rank`
|
76 |
+
partition: Note that indices in [first, last]"""
|
77 |
+
|
78 |
+
@staticmethod
|
79 |
+
def vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank, world_size):
|
80 |
+
index_f = rank * per_partition_vocab_size
|
81 |
+
index_l = index_f + per_partition_vocab_size
|
82 |
+
return index_f, index_l
|
83 |
+
|
84 |
+
@staticmethod
|
85 |
+
def vocab_range_from_global_vocab_size(global_vocab_size, rank, world_size):
|
86 |
+
per_partition_vocab_size = divide(global_vocab_size, world_size)
|
87 |
+
return VocabUtility.vocab_range_from_per_partition_vocab_size(
|
88 |
+
per_partition_vocab_size, rank, world_size
|
89 |
+
)
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|