File size: 5,593 Bytes
169dd2b da5c250 169dd2b 5f765b6 169dd2b 5f765b6 169dd2b 0d86b2e 169dd2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
license: llama3.1
language:
- en
pipeline_tag: image-text-to-text
tags:
- text-generation-inference
---
# Dragonfly Model Card
**Note: Users are permitted to use this model in accordance with the Llama 3.1 Community License Agreement.**
## Model Details
Dragonfly is a multimodal visual-language model, trained by instruction tuning on Llama 3.1.
- **Developed by:** [Together AI](https://www.together.ai/)
- **Model type:** An autoregressive visual-language model based on the transformer architecture
- **License:** [Llama 3.1 Community License Agreement](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
- **Finetuned from model:** [Llama 3.1](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct)
### Model Sources
- **Repository:** https://github.com/togethercomputer/Dragonfly
- **Paper:** https://arxiv.org/abs/2406.00977
## Uses
The primary use of Dragonfly is research on large visual-language models.
It is primarily intended for researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
## How to Get Started with the Model
### 💿 Installation
Create a conda environment and install necessary packages
```bash
conda env create -f environment.yml
conda activate dragonfly_env
```
Install flash attention
```bash
pip install flash-attn --no-build-isolation
```
As a final step, please run the following command.
```bash
pip install --upgrade -e .
```
### 🧠 Inference
If you have successfully completed the installation process, then you should be able to follow the steps below.
Question: What is so funny about this image?
![Monalisa Dog](monalisa_dog.jpg)
Load necessary packages
```python
import torch
from PIL import Image
from transformers import AutoProcessor, AutoTokenizer
from dragonfly.models.modeling_dragonfly import DragonflyForCausalLM
from dragonfly.models.processing_dragonfly import DragonflyProcessor
from pipeline.train.train_utils import random_seed
```
Instantiate the tokenizer, processor, and model.
```python
device = torch.device("cuda:0")
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/Llama-3.1-8B-Dragonfly-v2")
clip_processor = AutoProcessor.from_pretrained("openai/clip-vit-large-patch14-336")
image_processor = clip_processor.image_processor
processor = DragonflyProcessor(image_processor=image_processor, tokenizer=tokenizer, image_encoding_style="llava-hd")
model = DragonflyForCausalLM.from_pretrained("togethercomputer/Llama-3.1-8B-Dragonfly-v2")
model = model.to(torch.bfloat16)
model = model.to(device)
```
Now, lets load the image and process them.
```python
image = Image.open("./test_images/skateboard.png")
image = image.convert("RGB")
images = [image]
# images = [None] # if you do not want to pass any images
text_prompt = "<|start_header_id|>user<|end_header_id|>\n\nWhat is so funny about this image?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
inputs = processor(text=[text_prompt], images=images, max_length=4096, return_tensors="pt", is_generate=True)
inputs = inputs.to(device)
```
Finally, let us generate the responses from the model
```python
temperature = 0
with torch.inference_mode():
generation_output = model.generate(**inputs, max_new_tokens=1024, eos_token_id=tokenizer.encode("<|eot_id|>"), do_sample=temperature > 0, temperature=temperature, use_cache=True)
generation_text = processor.batch_decode(generation_output, skip_special_tokens=False)
```
An example response.
```plaintext
The humor in this image comes from the surreal juxtaposition of a dog's face with the body of the Mona Lisa, a famous painting by Leonardo da Vinci.
The Mona Lisa is known for her enigmatic smile and is often considered one of the most famous paintings in the world. By combining the dog's face with
the body of the Mona Lisa, the artist has created a whimsical and amusing image that plays on the viewer 's expectations and familiarity with the
original paintings. The contrast between the dog's natural, expressive features and the serene, mysterious expression of the Mona Lisa creates a
humerous effect that is likely to elicit laughter<|eot_id|>
```
## Training Details
See more details in the "Implementation" section of our [paper](https://arxiv.org/abs/2406.00977).
## Evaluation
See more details in the "Results" section of our [paper](https://arxiv.org/abs/2406.00977).
## 🏆 Credits
We would like to acknowledge the following resources that were instrumental in the development of Dragonfly:
- [Meta Llama 3.1](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct): We utilized the Llama 3 model as our foundational language model.
- [CLIP](https://huggingface.co/openai/clip-vit-base-patch32): Our vision backbone is CLIP model from OpenAI.
- Our codebase is built upon the following two codebases:
- [Otter: A Multi-Modal Model with In-Context Instruction Tuning](https://github.com/Luodian/Otter)
- [LLaVA-UHD: an LMM Perceiving Any Aspect Ratio and High-Resolution Images](https://github.com/thunlp/LLaVA-UHD)
## 📚 BibTeX
```bibtex
@misc{thapa2024dragonfly,
title={Dragonfly: Multi-Resolution Zoom-In Encoding Enhances Vision-Language Models},
author={Rahul Thapa and Kezhen Chen and Ian Covert and Rahul Chalamala and Ben Athiwaratkun and Shuaiwen Leon Song and James Zou},
year={2024},
eprint={2406.00977},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
## Model Card Authors
Rahul Thapa, Kezhen Chen, Rahul Chalamala
## Model Card Contact
Rahul Thapa (rahulthapa@together.ai), Kezhen Chen (kezhen@together.ai) |