File size: 13,409 Bytes
f7e5b33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
using System.Collections.Generic;
using UnityEngine;
using Unity.Sentis;
using System.Text;
using Unity.Collections;

public class RunWhisper : MonoBehaviour
{
    public enum WhisperLanguage
    {
        English = 0,
        Chinese = 1,
        German = 2,
        Spanish = 3,
        Russian = 4,
        Korean = 5,
        French = 6,
        Japanese = 7,
        Portuguese = 8,
        Turkish = 9,
        Polish = 10,
        Catalan = 11,
        Dutch = 12,
        Arabic = 13,
        Swedish = 14,
        Italian = 15,
        Indonesian = 16,
        Hindi = 17,
        Finnish = 18,
        Vietnamese = 19,
        Hebrew = 20,
        Ukrainian = 21,
        Greek = 22,
        Malay = 23,
        Czech = 24,
        Romanian = 25,
        Danish = 26,
        Hungarian = 27,
        Tamil = 28,
        Norwegian = 29,
        Thai = 30,
        Urdu = 31,
        Croatian = 32,
        Bulgarian = 33,
        Lithuanian = 34,
        Latin = 35,
        Maori = 36,
        Malayalam = 37,
        Welsh = 38,
        Slovak = 39,
        Telugu = 40,
        Persian = 41,
        Latvian = 42,
        Bengali = 43,
        Serbian = 44,
        Azerbaijani = 45,
        Slovenian = 46,
        Kannada = 47,
        Estonian = 48,
        Macedonian = 49,
        Breton = 50,
        Basque = 51,
        Icelandic = 52,
        Armenian = 53,
        Nepali = 54,
        Mongolian = 55,
        Bosnian = 56,
        Kazakh = 57,
        Albanian = 58,
        Swahili = 59,
        Galician = 60,
        Marathi = 61,
        Punjabi = 62,
        Sinhala = 63,
        Khmer = 64,
        Shona = 65,
        Yoruba = 66,
        Somali = 67,
        Afrikaans = 68,
        Occitan = 69,
        Georgian = 70,
        Belarusian = 71,
        Tajik = 72,
        Sindhi = 73,
        Gujarati = 74,
        Amharic = 75,
        Yiddish = 76,
        Lao = 77,
        Uzbek = 78,
        Faroese = 79,
        HaitianCreole = 80,
        Pashto = 81,
        Turkmen = 82,
        Nynorsk = 83,
        Maltese = 84,
        Sanskrit = 85,
        Luxembourgish = 86,
        Myanmar = 87,
        Tibetan = 88,
        Tagalog = 89,
        Malagasy = 90,
        Assamese = 91,
        Tatar = 92,
        Hawaiian = 93,
        Lingala = 94,
        Hausa = 95,
        Bashkir = 96,
        Javanese = 97,
        Sundanese = 98,
        Cantonese = 99
    }
    static int GetLanguageCode(WhisperLanguage language)
    {
        return 50259 + (int)language;
    }
    Worker decoder1, decoder2, encoder, spectrogram;
    Worker argmax;

    public AudioClip audioClip;

    // This is how many tokens you want. It can be adjusted.
    const int maxTokens = 100;

    // Special tokens see added tokens file for details
    const int END_OF_TEXT = 50257;
    const int START_OF_TRANSCRIPT = 50258;
    const int TRANSCRIBE = 50359; //for speech-to-text in specified language
    const int TRANSLATE = 50358;  //for speech-to-text then translate to English
    const int NO_TIME_STAMPS = 50363;
    const int START_TIME = 50364;

    int numSamples;
    string[] tokens;

    int tokenCount = 0;
    NativeArray<int> outputTokens;

    // Used for special character decoding
    int[] whiteSpaceCharacters = new int[256];

    Tensor<float> encodedAudio;

    bool transcribe = false;
    string outputString = "";

    // Maximum size of audioClip (30s at 16kHz)
    const int maxSamples = 30 * 16000;

    public ModelAsset audioDecoder1, audioDecoder2;
    public ModelAsset audioEncoder;
    public ModelAsset logMelSpectro;

    public async void Start()
    {
        SetupWhiteSpaceShifts();
        GetTokens();

        decoder1 = new Worker(ModelLoader.Load(audioDecoder1), BackendType.GPUCompute);
        decoder2 = new Worker(ModelLoader.Load(audioDecoder2), BackendType.GPUCompute);

        FunctionalGraph graph = new FunctionalGraph();
        var input = graph.AddInput(DataType.Float, new DynamicTensorShape(1, 1, 51865));
        var amax = Functional.ArgMax(input, -1, false);
        var selectTokenModel = graph.Compile(amax);
        argmax = new Worker(selectTokenModel, BackendType.GPUCompute);

        encoder = new Worker(ModelLoader.Load(audioEncoder), BackendType.GPUCompute);
        spectrogram = new Worker(ModelLoader.Load(logMelSpectro), BackendType.GPUCompute);

        outputTokens = new NativeArray<int>(maxTokens, Allocator.Persistent);

        outputTokens[0] = START_OF_TRANSCRIPT;
        outputTokens[1] = GetLanguageCode(WhisperLanguage.English);// GERMAN;//FRENCH;//
        outputTokens[2] = TRANSCRIBE; //TRANSLATE;//
        //outputTokens[3] = NO_TIME_STAMPS;// START_TIME;//
        tokenCount = 3;

        LoadAudio();
        EncodeAudio();
        transcribe = true;

        tokensTensor = new Tensor<int>(new TensorShape(1, maxTokens));
        ComputeTensorData.Pin(tokensTensor);
        tokensTensor.Reshape(new TensorShape(1, tokenCount));
        tokensTensor.dataOnBackend.Upload<int>(outputTokens, tokenCount);

        lastToken = new NativeArray<int>(1, Allocator.Persistent); lastToken[0] = NO_TIME_STAMPS;
        lastTokenTensor = new Tensor<int>(new TensorShape(1, 1), new[] { NO_TIME_STAMPS });

        while (true)
        {
            if (!transcribe || tokenCount >= (outputTokens.Length - 1))
                return;
            m_Awaitable = InferenceStep();
            await m_Awaitable;
        }
    }
    Awaitable m_Awaitable;

    NativeArray<int> lastToken;
    Tensor<int> lastTokenTensor;
    Tensor<int> tokensTensor;
    Tensor<float> audioInput;

    void LoadAudio()
    {
        numSamples = audioClip.samples;
        var data = new float[maxSamples];
        numSamples = maxSamples;
        audioClip.GetData(data, 0);
        audioInput = new Tensor<float>(new TensorShape(1, numSamples), data);
    }

    void EncodeAudio()
    {
        spectrogram.Schedule(audioInput);
        var logmel = spectrogram.PeekOutput() as Tensor<float>;
        encoder.Schedule(logmel);
        encodedAudio = encoder.PeekOutput() as Tensor<float>;
    }
    async Awaitable InferenceStep()
    {
        decoder1.SetInput("input_ids", tokensTensor);
        decoder1.SetInput("encoder_hidden_states", encodedAudio);
        decoder1.Schedule();

        var past_key_values_0_decoder_key = decoder1.PeekOutput("present.0.decoder.key") as Tensor<float>;
        var past_key_values_0_decoder_value = decoder1.PeekOutput("present.0.decoder.value") as Tensor<float>;
        var past_key_values_1_decoder_key = decoder1.PeekOutput("present.1.decoder.key") as Tensor<float>;
        var past_key_values_1_decoder_value = decoder1.PeekOutput("present.1.decoder.value") as Tensor<float>;
        var past_key_values_2_decoder_key = decoder1.PeekOutput("present.2.decoder.key") as Tensor<float>;
        var past_key_values_2_decoder_value = decoder1.PeekOutput("present.2.decoder.value") as Tensor<float>;
        var past_key_values_3_decoder_key = decoder1.PeekOutput("present.3.decoder.key") as Tensor<float>;
        var past_key_values_3_decoder_value = decoder1.PeekOutput("present.3.decoder.value") as Tensor<float>;
        var past_key_values_4_decoder_key = decoder1.PeekOutput("present.4.decoder.key") as Tensor<float>;
        var past_key_values_4_decoder_value = decoder1.PeekOutput("present.4.decoder.value") as Tensor<float>;
        var past_key_values_5_decoder_key = decoder1.PeekOutput("present.5.decoder.key") as Tensor<float>;
        var past_key_values_5_decoder_value = decoder1.PeekOutput("present.5.decoder.value") as Tensor<float>;

        var past_key_values_0_encoder_key = decoder1.PeekOutput("present.0.encoder.key") as Tensor<float>;
        var past_key_values_0_encoder_value = decoder1.PeekOutput("present.0.encoder.value") as Tensor<float>;
        var past_key_values_1_encoder_key = decoder1.PeekOutput("present.1.encoder.key") as Tensor<float>;
        var past_key_values_1_encoder_value = decoder1.PeekOutput("present.1.encoder.value") as Tensor<float>;
        var past_key_values_2_encoder_key = decoder1.PeekOutput("present.2.encoder.key") as Tensor<float>;
        var past_key_values_2_encoder_value = decoder1.PeekOutput("present.2.encoder.value") as Tensor<float>;
        var past_key_values_3_encoder_key = decoder1.PeekOutput("present.3.encoder.key") as Tensor<float>;
        var past_key_values_3_encoder_value = decoder1.PeekOutput("present.3.encoder.value") as Tensor<float>;
        var past_key_values_4_encoder_key = decoder1.PeekOutput("present.4.encoder.key") as Tensor<float>;
        var past_key_values_4_encoder_value = decoder1.PeekOutput("present.4.encoder.value") as Tensor<float>;
        var past_key_values_5_encoder_key = decoder1.PeekOutput("present.5.encoder.key") as Tensor<float>;
        var past_key_values_5_encoder_value = decoder1.PeekOutput("present.5.encoder.value") as Tensor<float>;

        decoder2.SetInput("input_ids", lastTokenTensor);
        decoder2.SetInput("past_key_values.0.decoder.key", past_key_values_0_decoder_key);
        decoder2.SetInput("past_key_values.0.decoder.value", past_key_values_0_decoder_value);
        decoder2.SetInput("past_key_values.1.decoder.key", past_key_values_1_decoder_key);
        decoder2.SetInput("past_key_values.1.decoder.value", past_key_values_1_decoder_value);
        decoder2.SetInput("past_key_values.2.decoder.key", past_key_values_2_decoder_key);
        decoder2.SetInput("past_key_values.2.decoder.value", past_key_values_2_decoder_value);
        decoder2.SetInput("past_key_values.3.decoder.key", past_key_values_3_decoder_key);
        decoder2.SetInput("past_key_values.3.decoder.value", past_key_values_3_decoder_value);
        decoder2.SetInput("past_key_values.4.decoder.key", past_key_values_4_decoder_key);
        decoder2.SetInput("past_key_values.4.decoder.value", past_key_values_4_decoder_value);
        decoder2.SetInput("past_key_values.5.decoder.key", past_key_values_5_decoder_key);
        decoder2.SetInput("past_key_values.5.decoder.value", past_key_values_5_decoder_value);

        decoder2.SetInput("past_key_values.0.encoder.key", past_key_values_0_encoder_key);
        decoder2.SetInput("past_key_values.0.encoder.value", past_key_values_0_encoder_value);
        decoder2.SetInput("past_key_values.1.encoder.key", past_key_values_1_encoder_key);
        decoder2.SetInput("past_key_values.1.encoder.value", past_key_values_1_encoder_value);
        decoder2.SetInput("past_key_values.2.encoder.key", past_key_values_2_encoder_key);
        decoder2.SetInput("past_key_values.2.encoder.value", past_key_values_2_encoder_value);
        decoder2.SetInput("past_key_values.3.encoder.key", past_key_values_3_encoder_key);
        decoder2.SetInput("past_key_values.3.encoder.value", past_key_values_3_encoder_value);
        decoder2.SetInput("past_key_values.4.encoder.key", past_key_values_4_encoder_key);
        decoder2.SetInput("past_key_values.4.encoder.value", past_key_values_4_encoder_value);
        decoder2.SetInput("past_key_values.5.encoder.key", past_key_values_5_encoder_key);
        decoder2.SetInput("past_key_values.5.encoder.value", past_key_values_5_encoder_value);

        decoder2.Schedule();

        var logits = decoder2.PeekOutput("logits") as Tensor<float>;
        argmax.Schedule(logits);
        using var t_Token = await argmax.PeekOutput().ReadbackAndCloneAsync() as Tensor<int>;
        int index = t_Token[0];

        outputTokens[tokenCount] = lastToken[0];
        lastToken[0] = index;
        tokenCount++;
        tokensTensor.Reshape(new TensorShape(1, tokenCount));
        tokensTensor.dataOnBackend.Upload<int>(outputTokens, tokenCount);
        lastTokenTensor.dataOnBackend.Upload<int>(lastToken, 1);

        if (index == END_OF_TEXT)
        {
            transcribe = false;
        }
        else if (index < tokens.Length)
        {
            outputString += GetUnicodeText(tokens[index]);
        }

        Debug.Log(outputString);
    }

    // Tokenizer
    public TextAsset jsonFile;
    void GetTokens()
    {
        var vocab = Newtonsoft.Json.JsonConvert.DeserializeObject<Dictionary<string, int>>(jsonFile.text);
        tokens = new string[vocab.Count];
        foreach (var item in vocab)
        {
            tokens[item.Value] = item.Key;
        }
    }

    string GetUnicodeText(string text)
    {
        var bytes = Encoding.GetEncoding("ISO-8859-1").GetBytes(ShiftCharacterDown(text));
        return Encoding.UTF8.GetString(bytes);
    }

    string ShiftCharacterDown(string text)
    {
        string outText = "";
        foreach (char letter in text)
        {
            outText += ((int)letter <= 256) ? letter :
                (char)whiteSpaceCharacters[(int)(letter - 256)];
        }
        return outText;
    }

    void SetupWhiteSpaceShifts()
    {
        for (int i = 0, n = 0; i < 256; i++)
        {
            if (IsWhiteSpace((char)i)) whiteSpaceCharacters[n++] = i;
        }
    }

    bool IsWhiteSpace(char c)
    {
        return !(('!' <= c && c <= '~') || ('�' <= c && c <= '�') || ('�' <= c && c <= '�'));
    }

    private void OnDestroy()
    {
        decoder1.Dispose();
        decoder2.Dispose();
        encoder.Dispose();
        spectrogram.Dispose();
        argmax.Dispose();
        audioInput.Dispose();
        lastTokenTensor.Dispose();
        tokensTensor.Dispose();
    }
}