File size: 5,745 Bytes
75c8d1e
 
44bd6da
75c8d1e
 
 
 
 
 
 
 
 
 
 
44bd6da
 
 
75c8d1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
datasets:
- tner/mit_restaurant
metrics:
- f1
- precision
- recall
model-index:
- name: tner/roberta-large-mit-restaurant
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: tner/mit_restaurant
      type: tner/mit_restaurant
      args: tner/mit_restaurant
    metrics:
    - name: F1
      type: f1
      value: 0.8164676304211189
    - name: Precision
      type: precision
      value: 0.8085901027077498
    - name: Recall
      type: recall
      value: 0.8245001586797842
    - name: F1 (macro)
      type: f1_macro
      value: 0.8081522050756316
    - name: Precision (macro)
      type: precision_macro
      value: 0.7974927131040113
    - name: Recall (macro)
      type: recall_macro
      value: 0.8199029986502094
    - name: F1 (entity span)
      type: f1_entity_span
      value: 0.8557510999371464
    - name: Precision (entity span)
      type: precision_entity_span
      value: 0.8474945533769063
    - name: Recall (entity span)
      type: recall_entity_span
      value: 0.8641701047286575

pipeline_tag: token-classification
widget:
- text: "Jacob Collier is a Grammy awarded artist from England."
  example_title: "NER Example 1"
---
# tner/roberta-large-mit-restaurant

This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the 
[tner/mit_restaurant](https://huggingface.co/datasets/tner/mit_restaurant) dataset.
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
for more detail). It achieves the following results on the test set:
- F1 (micro): 0.8164676304211189
- Precision (micro): 0.8085901027077498
- Recall (micro): 0.8245001586797842
- F1 (macro): 0.8081522050756316
- Precision (macro): 0.7974927131040113
- Recall (macro): 0.8199029986502094

The per-entity breakdown of the F1 score on the test set are below:
- amenity: 0.7140221402214022
- cuisine: 0.8558052434456929
- dish: 0.829103214890017
- location: 0.8611793611793611
- money: 0.8579710144927537
- rating: 0.8
- restaurant: 0.8713375796178344
- time: 0.6757990867579908 

For F1 scores, the confidence interval is obtained by bootstrap as below:
- F1 (micro): 
    - 90%: [0.8050039870241192, 0.8289531287254172]
    - 95%: [0.8030897272187587, 0.8312785732455824] 
- F1 (macro): 
    - 90%: [0.8050039870241192, 0.8289531287254172]
    - 95%: [0.8030897272187587, 0.8312785732455824] 

Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-mit-restaurant/raw/main/eval/metric.json) 
and [metric file of entity span](https://huggingface.co/tner/roberta-large-mit-restaurant/raw/main/eval/metric_span.json).

### Usage
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip   
```shell
pip install tner
```
and activate model as below.
```python
from tner import TransformersNER
model = TransformersNER("tner/roberta-large-mit-restaurant")
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
```
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.

### Training hyperparameters

The following hyperparameters were used during training:
 - dataset: ['tner/mit_restaurant']
 - dataset_split: train
 - dataset_name: None
 - local_dataset: None
 - model: roberta-large
 - crf: True
 - max_length: 128
 - epoch: 15
 - batch_size: 64
 - lr: 1e-05
 - random_seed: 42
 - gradient_accumulation_steps: 1
 - weight_decay: None
 - lr_warmup_step_ratio: 0.1
 - max_grad_norm: 10.0

The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-mit-restaurant/raw/main/trainer_config.json).

### Reference
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).

```

@inproceedings{ushio-camacho-collados-2021-ner,
    title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
    author = "Ushio, Asahi  and
      Camacho-Collados, Jose",
    booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
    month = apr,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.eacl-demos.7",
    doi = "10.18653/v1/2021.eacl-demos.7",
    pages = "53--62",
    abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
}

```