File size: 3,948 Bytes
0ae12cd
7646089
 
 
 
 
 
 
 
 
 
0ae12cd
7646089
 
621ce78
7646089
 
 
07b330d
7646089
638944e
 
 
 
 
7646089
 
 
 
 
 
 
07b330d
7646089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
638944e
 
7646089
 
 
 
 
 
 
 
 
 
 
 
638944e
7646089
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
language:
  - en
tags:
  - stable-diffusion
  - stable-diffusion-xl
  - onnxruntime
  - onnx
  - text-to-image
---


# Stable Diffusion XL Base 1.0 for ONNX Runtime CUDA

## Introduction

This repository hosts the optimized onnx models of **Stable Diffusion XL Base 1.0** to accelerate inference with ONNX Runtime CUDA execution provider for NVidia GPUs. It cannot run in other execution providers like CPU or DirectML.

The models are generated by [Olive](https://github.com/microsoft/Olive/tree/main/examples/stable_diffusion) with command like the following:
```
python stable_diffusion_xl.py --provider cuda --optimize --use_fp16_fixed_vae
```

See the [usage instructions](#usage-example) for how to run the SDXL pipeline with the ONNX files hosted in this repository.

## Model Description

- **Developed by:** Stability AI
- **Model type:** Diffusion-based text-to-image generative model
- **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/LICENSE.md)
- **Model Description:** This is a conversion of the [SDXL base 1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) for [ONNX Runtime](https://github.com/microsoft/onnxruntime) inference with CUDA execution provider.

The VAE decoder is converted from [sdxl-vae-fp16-fix](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix). There are slight discrepancies between its output and that of the original VAE, but the decoded images should be [close enough for most purposes](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/discussions/7#64c5c0f8e2e5c94bd04eaa80).

## Usage Example

Following the [demo instructions](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/stable_diffusion/README.md#run-demo-with-docker). Example steps:

0. Install nvidia-docker using these [instructions](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html).

1. Clone onnxruntime repository.
```shell
git clone https://github.com/microsoft/onnxruntime
cd onnxruntime
```

2. Download the SDXL ONNX files from this repo
```shell
git lfs install
git clone https://huggingface.co/tlwu/stable-diffusion-xl-1.0-onnxruntime
```

3. Launch the docker
```shell
docker run --rm -it --gpus all -v $PWD:/workspace nvcr.io/nvidia/pytorch:23.10-py3 /bin/bash
```

4. Build ONNX Runtime from source
```shell
export CUDACXX=/usr/local/cuda-12.2/bin/nvcc
git config --global --add safe.directory '*'
sh build.sh --config Release  --build_shared_lib --parallel --use_cuda --cuda_version 12.2 \
            --cuda_home /usr/local/cuda-12.2 --cudnn_home /usr/lib/x86_64-linux-gnu/ --build_wheel --skip_tests \
            --use_tensorrt --tensorrt_home /usr/src/tensorrt \
            --cmake_extra_defines onnxruntime_BUILD_UNIT_TESTS=OFF \
            --cmake_extra_defines CMAKE_CUDA_ARCHITECTURES=80 \
            --allow_running_as_root
python3 -m pip install build/Linux/Release/dist/onnxruntime_gpu-*-cp310-cp310-linux_x86_64.whl --force-reinstall
```

If the GPU is not A100, change CMAKE_CUDA_ARCHITECTURES=80 in the command line according to the GPU compute capacity (like 89 for RTX 4090, or 86 for RTX 3090). If your machine has less than 64GB memory, replace --parallel by --parallel 4 --nvcc_threads 1  to avoid out of memory.

5. Install libraries and requirements
```shell
python3 -m pip install --upgrade pip
cd /workspace/onnxruntime/python/tools/transformers/models/stable_diffusion
python3 -m pip install -r requirements-cuda12.txt
python3 -m pip install --upgrade polygraphy onnx-graphsurgeon --extra-index-url https://pypi.ngc.nvidia.com
```

6. Perform ONNX Runtime optimized inference
```shell
python3 demo_txt2img_xl.py \
  "starry night over Golden Gate Bridge by van gogh" \
  --engine-dir /workspace/stable-diffusion-xl-1.0-onnxruntime
```