timm
/

Image Classification
timm
PyTorch
Safetensors
rwightman's picture
rwightman HF staff
Add model
4bdc94b verified
|
raw
history blame
4.87 kB
metadata
tags:
  - image-classification
  - timm
library_name: timm
license: apache-2.0
datasets:
  - imagenet-1k
  - unknown-6m

Model card for nextvit_small.bd_ssld_6m_in1k

A Next-ViT image classification model. Trained by paper authors on an unknown 6M sample dataset and ImageNet-1k using SSLD distillation.

Model Details

  • Model Type: Image classification / feature backbone
  • Model Stats:
    • Params (M): 31.8
    • GMACs: 5.8
    • Activations (M): 17.6
    • Image size: 224 x 224
  • Pretrain Dataset: Unknown-6M
  • Dataset: ImageNet-1k
  • Papers:
  • Original: https://github.com/bytedance/Next-ViT

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('nextvit_small.bd_ssld_6m_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'nextvit_small.bd_ssld_6m_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 96, 56, 56])
    #  torch.Size([1, 256, 28, 28])
    #  torch.Size([1, 512, 14, 14])
    #  torch.Size([1, 1024, 7, 7])

    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'nextvit_small.bd_ssld_6m_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1024, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Model Comparison

By Top-1

model top1 top1_err top5 top5_err param_count
nextvit_large.bd_ssld_6m_in1k_384 86.542 13.458 98.142 1.858 57.87
nextvit_base.bd_ssld_6m_in1k_384 86.352 13.648 98.04 1.96 44.82
nextvit_small.bd_ssld_6m_in1k_384 85.964 14.036 97.908 2.092 31.76
nextvit_large.bd_ssld_6m_in1k 85.48 14.52 97.696 2.304 57.87
nextvit_base.bd_ssld_6m_in1k 85.186 14.814 97.59 2.41 44.82
nextvit_large.bd_in1k_384 84.924 15.076 97.294 2.706 57.87
nextvit_small.bd_ssld_6m_in1k 84.862 15.138 97.382 2.618 31.76
nextvit_base.bd_in1k_384 84.706 15.294 97.224 2.776 44.82
nextvit_small.bd_in1k_384 84.022 15.978 96.99 3.01 31.76
nextvit_large.bd_in1k 83.626 16.374 96.694 3.306 57.87
nextvit_base.bd_in1k 83.472 16.528 96.656 3.344 44.82
nextvit_small.bd_in1k 82.61 17.39 96.226 3.774 31.76

Citation

@article{li2022next,
  title={Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios},
  author={Li, Jiashi and Xia, Xin and Li, Wei and Li, Huixia and Wang, Xing and Xiao, Xuefeng and Wang, Rui and Zheng, Min and Pan, Xin},
  journal={arXiv preprint arXiv:2207.05501},
  year={2022}
}