|
--- |
|
tags: |
|
- image-classification |
|
- timm |
|
library_name: timm |
|
license: apache-2.0 |
|
datasets: |
|
- imagenet-1k |
|
--- |
|
# Model card for inception_v3.tv_in1k |
|
|
|
A Inception-v3 image classification model. Trained on ImageNet-1k, torchvision weights. |
|
|
|
## Model Details |
|
- **Model Type:** Image classification / feature backbone |
|
- **Model Stats:** |
|
- Params (M): 23.8 |
|
- GMACs: 5.7 |
|
- Activations (M): 9.0 |
|
- Image size: 299 x 299 |
|
- **Papers:** |
|
- Rethinking the Inception Architecture for Computer Vision: https://arxiv.org/abs/1512.00567 |
|
- **Original:** https://github.com/pytorch/vision |
|
- **Dataset:** ImageNet-1k |
|
|
|
## Model Usage |
|
### Image Classification |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model('inception_v3.tv_in1k', pretrained=True) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) |
|
``` |
|
|
|
### Feature Map Extraction |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'inception_v3.tv_in1k', |
|
pretrained=True, |
|
features_only=True, |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
for o in output: |
|
# print shape of each feature map in output |
|
# e.g.: |
|
# torch.Size([1, 64, 147, 147]) |
|
# torch.Size([1, 192, 71, 71]) |
|
# torch.Size([1, 288, 35, 35]) |
|
# torch.Size([1, 768, 17, 17]) |
|
# torch.Size([1, 2048, 8, 8]) |
|
|
|
print(o.shape) |
|
``` |
|
|
|
### Image Embeddings |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'inception_v3.tv_in1k', |
|
pretrained=True, |
|
num_classes=0, # remove classifier nn.Linear |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
|
|
# or equivalently (without needing to set num_classes=0) |
|
|
|
output = model.forward_features(transforms(img).unsqueeze(0)) |
|
# output is unpooled, a (1, 2048, 8, 8) shaped tensor |
|
|
|
output = model.forward_head(output, pre_logits=True) |
|
# output is a (1, num_features) shaped tensor |
|
``` |
|
|
|
## Model Comparison |
|
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). |
|
|
|
## Citation |
|
```bibtex |
|
@article{DBLP:journals/corr/SzegedyVISW15, |
|
author = {Christian Szegedy and |
|
Vincent Vanhoucke and |
|
Sergey Ioffe and |
|
Jonathon Shlens and |
|
Zbigniew Wojna}, |
|
title = {Rethinking the Inception Architecture for Computer Vision}, |
|
journal = {CoRR}, |
|
volume = {abs/1512.00567}, |
|
year = {2015}, |
|
url = {http://arxiv.org/abs/1512.00567}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1512.00567}, |
|
timestamp = {Mon, 13 Aug 2018 16:49:07 +0200}, |
|
biburl = {https://dblp.org/rec/journals/corr/SzegedyVISW15.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
``` |
|
|