timm
/

Image Classification
timm
PyTorch
Safetensors
dm_nfnet_f5.dm_in1k / README.md
rwightman's picture
rwightman HF staff
Fix library_name.
57c6743 verified
|
raw
history blame
4.76 kB
---
license: apache-2.0
library_name: timm
tags:
- image-classification
- timm
datasets:
- imagenet-1k
---
# Model card for dm_nfnet_f5.dm_in1k
A NFNet (Normalization Free Network) image classification model. Trained on ImageNet-1k by paper authors.
Normalization Free Networks are (pre-activation) ResNet-like models without any normalization layers. Instead of Batch Normalization or alternatives, they use Scaled Weight Standardization and specifically placed scalar gains in residual path and at non-linearities based on signal propagation analysis.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 377.2
- GMACs: 170.7
- Activations (M): 204.6
- Image size: train = 416 x 416, test = 544 x 544
- **Papers:**
- High-Performance Large-Scale Image Recognition Without Normalization: https://arxiv.org/abs/2102.06171
- Characterizing signal propagation to close the performance gap in unnormalized ResNets: https://arxiv.org/abs/2101.08692
- **Original:** https://github.com/deepmind/deepmind-research/tree/master/nfnets
- **Dataset:** ImageNet-1k
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('dm_nfnet_f5.dm_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'dm_nfnet_f5.dm_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 64, 208, 208])
# torch.Size([1, 256, 104, 104])
# torch.Size([1, 512, 52, 52])
# torch.Size([1, 1536, 26, 26])
# torch.Size([1, 3072, 13, 13])
print(o.shape)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'dm_nfnet_f5.dm_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 3072, 13, 13) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
## Citation
```bibtex
@article{brock2021high,
author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan},
title={High-Performance Large-Scale Image Recognition Without Normalization},
journal={arXiv preprint arXiv:2102.06171},
year={2021}
}
```
```bibtex
@inproceedings{brock2021characterizing,
author={Andrew Brock and Soham De and Samuel L. Smith},
title={Characterizing signal propagation to close the performance gap in
unnormalized ResNets},
booktitle={9th International Conference on Learning Representations, {ICLR}},
year={2021}
}
```
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```