timm
/

Image Classification
timm
PyTorch
Safetensors
rwightman's picture
rwightman HF staff
Add model
c566406
metadata
tags:
  - image-classification
  - timm
library_name: timm
license: apache-2.0
datasets:
  - imagenet-1k

Model card for crossvit_small_240.in1k

A CrossViT image classification model. Trained on ImageNet-1k by paper authors.

Model Details

  • Model Type: Image classification / feature backbone
  • Model Stats:
    • Params (M): 26.9
    • GMACs: 5.6
    • Activations (M): 18.2
    • Image size: 240 x 240
  • Papers:
  • Dataset: ImageNet-1k
  • Original: https://github.com/IBM/CrossViT

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('crossvit_small_240.in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'crossvit_small_240.in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (torch.Size([1, 401, 192]), torch.Size([1, 197, 384])) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Model Comparison

Explore the dataset and runtime metrics of this model in timm model results.

Citation

@inproceedings{
  chen2021crossvit,
  title={{CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification}},
  author={Chun-Fu (Richard) Chen and Quanfu Fan and Rameswar Panda},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2021}
}