metadata
license: apache-2.0
library_name: timm
tags:
- image-classification
- timm
datasets:
- imagenet-1k
Model card for cait_xs24_384.fb_dist_in1k
A CaiT (Class-Attention in Image Transformers) image classification model. Pretrained on ImageNet-1k with distillation by paper authors.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 26.7
- GMACs: 19.3
- Activations (M): 184.0
- Image size: 384 x 384
- Papers:
- Going deeper with Image Transformers: https://arxiv.org/abs/2103.17239
- Dataset: ImageNet-1k
- Original: https://github.com/facebookresearch/deit
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('cait_xs24_384.fb_dist_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'cait_xs24_384.fb_dist_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 577, 288) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Citation
@InProceedings{Touvron_2021_ICCV,
author = {Touvron, Hugo and Cord, Matthieu and Sablayrolles, Alexandre and Synnaeve, Gabriel and J'egou, Herv'e},
title = {Going Deeper With Image Transformers},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {32-42}
}