t5-base-mmlu-qa2a / README.md
tilyupo's picture
Update README.md
f18fb31
metadata
license: apache-2.0
base_model: google/flan-t5-base
tags:
  - generated_from_keras_callback
model-index:
  - name: t5-base-mmlu-qa2a
    results: []

t5-base-mmlu-qa2a

This model is a fine-tuned version of google/flan-t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1856
  • Validation Loss: 0.2587
  • Epoch: 1
{'eval_loss': 2.8363170623779297,
 'eval_bleu': 8.346157741863188,
 'eval_rouge1': 19.52,
 'eval_rouge2': 6.55,
 'eval_rougeL': 18.19,
 'eval_rougeLsum': 18.19,
 'eval_exact': 0.0019177661859466095,
 'eval_runtime': 278.5068,
 'eval_samples_per_second': 46.807,
 'eval_steps_per_second': 1.465}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adafactor', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_2_decay': -0.8, 'epsilon_1': 1e-30, 'epsilon_2': 0.001, 'clip_threshold': 1.0, 'relative_step': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Epoch
0.3922 0.2555 0
0.1856 0.2587 1

Framework versions

  • Transformers 4.31.0
  • TensorFlow 2.12.0
  • Datasets 2.14.3
  • Tokenizers 0.13.3