import torch | |
from typing import Any, Dict | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
class EndpointHandler: | |
def __init__(self, path=""): | |
# load model and tokenizer from path | |
self.tokenizer = AutoTokenizer.from_pretrained(path) | |
self.model = AutoModelForCausalLM.from_pretrained( | |
path, device_map="auto", torch_dtype=torch.float16, trust_remote_code=True | |
) | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: | |
# process input | |
inputs = data.pop("inputs", data) | |
parameters = data.pop("parameters", None) | |
# preprocess | |
inputs = self.tokenizer(inputs, return_tensors="pt").to(self.device) | |
# pass inputs with all kwargs in data | |
if parameters is not None: | |
outputs = self.model.generate(**inputs, **parameters) | |
else: | |
outputs = self.model.generate(**inputs) | |
# postprocess the prediction | |
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return [{"generated_text": prediction}] |