nilabhra commited on
Commit
22d1486
1 Parent(s): bcf87a6

Delete .ipynb_checkpoints

Browse files
.ipynb_checkpoints/README-checkpoint.md DELETED
@@ -1,156 +0,0 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Falcon-11B-Base-V1.1
7
- The Falcon-11B-Base-V1 Large Language Model (LLM) is a pretrained generative text model with 11.1 billion parameters.
8
-
9
- ## Model Specifications
10
- - Base Model (not instruct tuned)
11
- - Flash Attention 2
12
- - Untied LM-Head and Word Embeddings (This adds 300M parameters over the 10.8B)
13
- - 11.1B Parameters
14
- - Rope Theta 500,042
15
-
16
-
17
-
18
- ### Inference Model
19
- Inference the model with `trust_remote_code=True` to use our modeling code. We show an example below with the most basic hyperparameters.
20
-
21
- ```python
22
- import os
23
- import sys
24
- import torch
25
- from transformers import AutoTokenizer, AutoModelForCausalLM
26
-
27
- #Load Model and Tokenizer
28
- base_model_id = "ruliadai/falcon-base-v1.1"
29
-
30
- model = AutoModelForCausalLM.from_pretrained(
31
- base_model_id,
32
- device_map="auto",
33
- torch_dtype=torch.bfloat16,
34
- trust_remote_code=True,
35
- attn_implementation="flash_attention_2",
36
- )
37
-
38
- tokenizer = AutoTokenizer.from_pretrained(
39
- base_model_id,
40
- padding_side="left",
41
- device_map="auto",
42
- )
43
- tokenizer.pad_token = tokenizer.eos_token
44
-
45
- #Run Inference
46
- while True:
47
- prompt = input("Instruction: ")
48
- model_input = tokenizer(prompt, return_tensors="pt", return_token_type_ids=False)
49
- model.eval()
50
- print(model.generation_config)
51
- with torch.no_grad():
52
- print(tokenizer.decode(
53
- model.generate(**model_input,max_new_tokens=800, temperature=0.0, do_sample=False, repetition_penalty=1.15)[0], use_cache=True)
54
- )
55
- ```
56
-
57
- ### How to run inference
58
-
59
- Setup and activate your venv/or conda env
60
-
61
- ```bash
62
- python3 -m venv env \
63
- && source env/bin/activate
64
- ```
65
-
66
- Install torch:
67
- ```bash
68
- pip3 install torch torchvision torchaudio
69
- ```
70
- Note that you may need to install torch according to your system req/drivers (https://pytorch.org/get-started/locally/)
71
-
72
-
73
- Install requirements:
74
- ```bash
75
- pip3 install --upgrade --force-reinstall transformers accelerate flash-attn hf_transfer
76
- ```
77
-
78
- Run script:
79
-
80
- ```bash
81
-
82
- HF_HUB_ENABLE_HF_TRANSFER=1 HF_TOKEN=<YOUR_HF_TOKEN> python3 inference.py
83
- ```
84
-
85
-
86
- If flash-attn is broken:
87
- ```bash
88
- pip3 uninstall flash-attn
89
- pip3 cache purge
90
- pip3 install flash-attn
91
- ```
92
-
93
-
94
- ## Model Evaluation
95
-
96
- ### Measured Benchmarks (by Ruliad)
97
-
98
- | MODEL | AVERAGE | MMLU (5-s) | TQA (0-s) | ARC (25-s) | GSM8K (5-s)| HS (10-s) | WG (5-s) |
99
- | --------------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- |
100
- | Falcon-Base-v1.1 | 0.6440 | 0.5683 | 0.5263 | 0.6041 | 0.5542 | 0.8280 | 0.7806 |
101
- | Llama-3-8B | 0.6300 | 0.6513 | 0.4385 | 0.5904 | 0.5034 | 0.8223 | 0.7751 |
102
- | Mistral-7B-v0.1 | 0.6130 | 0.6233 | 0.4258 | 0.6220 | 0.3859 | 0.8332 | 0.7861 |
103
-
104
- ### Evaluation Replication
105
-
106
- **Install Eval Harness**
107
-
108
- To install the `lm-eval` package from the github repository, run:
109
- ```bash
110
- git clone https://github.com/EleutherAI/lm-evaluation-harness
111
- cd lm-evaluation-harness
112
- pip install -e .
113
- pip install hf_transfer accelerate transformers flash_attn
114
- ```
115
- **Benchmarking**
116
-
117
- To evaluate our model:
118
-
119
- Evaluating MMLU, GSM8K and WG on 5-Shot
120
- ```bash
121
- HF_HUB_ENABLE_HF_TRANSFER=1 HF_TOKEN=<YOUR_HF_TOKEN> accelerate launch -m lm_eval --model hf-auto \
122
- --model_args pretrained=ruliadai/falcon-base-v1.1,trust_remote_code=True \
123
- --tasks mmlu,gsm8k,winogrande \
124
- --device cuda:0 \
125
- --num_fewshot 5 \
126
- --batch_size 1
127
- ```
128
-
129
- Evaluating TQA on 0-Shot
130
- ```bash
131
- HF_HUB_ENABLE_HF_TRANSFER=1 HF_TOKEN=<YOUR_HF_TOKEN> accelerate launch -m lm_eval --model hf-auto \
132
- --model_args pretrained=ruliadai/falcon-base-v1.1,trust_remote_code=True \
133
- --tasks truthfulqa_mc2 \
134
- --device cuda:0 \
135
- --batch_size 1
136
- ```
137
-
138
- Evaluating HS on 10-Shot
139
- ```bash
140
- HF_HUB_ENABLE_HF_TRANSFER=1 HF_TOKEN=<YOUR_HF_TOKEN> accelerate launch -m lm_eval --model hf-auto \
141
- --model_args pretrained=ruliadai/falcon-base-v1.1,trust_remote_code=True \
142
- --tasks hellaswag \
143
- --device cuda:0 \
144
- --num_fewshot 10 \
145
- --batch_size 1
146
- ```
147
-
148
- Evaluating ARC on 25-Shot
149
- ```bash
150
- HF_HUB_ENABLE_HF_TRANSFER=1 HF_TOKEN=<YOUR_HF_TOKEN> accelerate launch -m lm_eval --model hf-auto \
151
- --model_args pretrained=ruliadai/falcon-base-v1.1,trust_remote_code=True \
152
- --tasks arc_challenge \
153
- --device cuda:0 \
154
- --num_fewshot 25 \
155
- --batch_size 1
156
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/config-checkpoint.json DELETED
@@ -1,43 +0,0 @@
1
- {
2
- "_name_or_path": "tiiuae/falcon-11B",
3
- "activation": "gelu",
4
- "alibi": false,
5
- "architectures": [
6
- "FalconForCausalLM"
7
- ],
8
- "attention_dropout": 0.0,
9
- "auto_map": {
10
- "AutoConfig": "tiiuae/falcon-11B--configuration_falcon.FalconConfig",
11
- "AutoModel": "tiiuae/falcon-11B--modeling_falcon.FalconModel",
12
- "AutoModelForCausalLM": "tiiuae/falcon-11B--modeling_falcon.FalconForCausalLM",
13
- "AutoModelForQuestionAnswering": "tiiuae/falcon-11B--modeling_falcon.FalconForQuestionAnswering",
14
- "AutoModelForSequenceClassification": "tiiuae/falcon-11B--modeling_falcon.FalconForSequenceClassification",
15
- "AutoModelForTokenClassification": "tiiuae/falcon-11B--modeling_falcon.FalconForTokenClassification"
16
- },
17
- "bias": false,
18
- "bos_token_id": 11,
19
- "eos_token_id": 11,
20
- "ff_factor": 4,
21
- "ffn_hidden_size": 16384,
22
- "hidden_dropout": 0.0,
23
- "hidden_size": 4096,
24
- "initializer_range": 0.02,
25
- "layer_norm_epsilon": 1e-05,
26
- "max_position_embeddings": 8192,
27
- "model_type": "falcon",
28
- "multi_query": true,
29
- "new_decoder_architecture": true,
30
- "num_attention_heads": 32,
31
- "num_hidden_layers": 60,
32
- "num_kv_heads": 8,
33
- "num_ln_in_parallel_attn": 1,
34
- "parallel_attn": true,
35
- "rope_scaling": null,
36
- "rope_theta": 500042.0,
37
- "rotary_base": 5000042,
38
- "tie_word_embeddings": false,
39
- "torch_dtype": "bfloat16",
40
- "transformers_version": "4.39.2",
41
- "use_cache": true,
42
- "vocab_size": 65024
43
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/generation_config-checkpoint.json DELETED
@@ -1,6 +0,0 @@
1
- {
2
- "_from_model_config": true,
3
- "bos_token_id": 11,
4
- "eos_token_id": 11,
5
- "transformers_version": "4.40.1"
6
- }
 
 
 
 
 
 
 
.ipynb_checkpoints/model.safetensors.index-checkpoint.json DELETED
@@ -1,371 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 22205644800
4
- },
5
- "weight_map": {
6
- "lm_head.weight": "model-00005-of-00005.safetensors",
7
- "transformer.h.0.input_layernorm.bias": "model-00001-of-00005.safetensors",
8
- "transformer.h.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
9
- "transformer.h.0.mlp.downscale.weight": "model-00001-of-00005.safetensors",
10
- "transformer.h.0.mlp.upscale.weight": "model-00001-of-00005.safetensors",
11
- "transformer.h.0.self_attention.dense.weight": "model-00001-of-00005.safetensors",
12
- "transformer.h.0.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
13
- "transformer.h.1.input_layernorm.bias": "model-00001-of-00005.safetensors",
14
- "transformer.h.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
15
- "transformer.h.1.mlp.downscale.weight": "model-00001-of-00005.safetensors",
16
- "transformer.h.1.mlp.upscale.weight": "model-00001-of-00005.safetensors",
17
- "transformer.h.1.self_attention.dense.weight": "model-00001-of-00005.safetensors",
18
- "transformer.h.1.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
19
- "transformer.h.10.input_layernorm.bias": "model-00001-of-00005.safetensors",
20
- "transformer.h.10.input_layernorm.weight": "model-00001-of-00005.safetensors",
21
- "transformer.h.10.mlp.downscale.weight": "model-00001-of-00005.safetensors",
22
- "transformer.h.10.mlp.upscale.weight": "model-00001-of-00005.safetensors",
23
- "transformer.h.10.self_attention.dense.weight": "model-00001-of-00005.safetensors",
24
- "transformer.h.10.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
25
- "transformer.h.11.input_layernorm.bias": "model-00001-of-00005.safetensors",
26
- "transformer.h.11.input_layernorm.weight": "model-00001-of-00005.safetensors",
27
- "transformer.h.11.mlp.downscale.weight": "model-00001-of-00005.safetensors",
28
- "transformer.h.11.mlp.upscale.weight": "model-00001-of-00005.safetensors",
29
- "transformer.h.11.self_attention.dense.weight": "model-00001-of-00005.safetensors",
30
- "transformer.h.11.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
31
- "transformer.h.12.input_layernorm.bias": "model-00002-of-00005.safetensors",
32
- "transformer.h.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
33
- "transformer.h.12.mlp.downscale.weight": "model-00002-of-00005.safetensors",
34
- "transformer.h.12.mlp.upscale.weight": "model-00001-of-00005.safetensors",
35
- "transformer.h.12.self_attention.dense.weight": "model-00001-of-00005.safetensors",
36
- "transformer.h.12.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
37
- "transformer.h.13.input_layernorm.bias": "model-00002-of-00005.safetensors",
38
- "transformer.h.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
39
- "transformer.h.13.mlp.downscale.weight": "model-00002-of-00005.safetensors",
40
- "transformer.h.13.mlp.upscale.weight": "model-00002-of-00005.safetensors",
41
- "transformer.h.13.self_attention.dense.weight": "model-00002-of-00005.safetensors",
42
- "transformer.h.13.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
43
- "transformer.h.14.input_layernorm.bias": "model-00002-of-00005.safetensors",
44
- "transformer.h.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
45
- "transformer.h.14.mlp.downscale.weight": "model-00002-of-00005.safetensors",
46
- "transformer.h.14.mlp.upscale.weight": "model-00002-of-00005.safetensors",
47
- "transformer.h.14.self_attention.dense.weight": "model-00002-of-00005.safetensors",
48
- "transformer.h.14.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
49
- "transformer.h.15.input_layernorm.bias": "model-00002-of-00005.safetensors",
50
- "transformer.h.15.input_layernorm.weight": "model-00002-of-00005.safetensors",
51
- "transformer.h.15.mlp.downscale.weight": "model-00002-of-00005.safetensors",
52
- "transformer.h.15.mlp.upscale.weight": "model-00002-of-00005.safetensors",
53
- "transformer.h.15.self_attention.dense.weight": "model-00002-of-00005.safetensors",
54
- "transformer.h.15.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
55
- "transformer.h.16.input_layernorm.bias": "model-00002-of-00005.safetensors",
56
- "transformer.h.16.input_layernorm.weight": "model-00002-of-00005.safetensors",
57
- "transformer.h.16.mlp.downscale.weight": "model-00002-of-00005.safetensors",
58
- "transformer.h.16.mlp.upscale.weight": "model-00002-of-00005.safetensors",
59
- "transformer.h.16.self_attention.dense.weight": "model-00002-of-00005.safetensors",
60
- "transformer.h.16.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
61
- "transformer.h.17.input_layernorm.bias": "model-00002-of-00005.safetensors",
62
- "transformer.h.17.input_layernorm.weight": "model-00002-of-00005.safetensors",
63
- "transformer.h.17.mlp.downscale.weight": "model-00002-of-00005.safetensors",
64
- "transformer.h.17.mlp.upscale.weight": "model-00002-of-00005.safetensors",
65
- "transformer.h.17.self_attention.dense.weight": "model-00002-of-00005.safetensors",
66
- "transformer.h.17.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
67
- "transformer.h.18.input_layernorm.bias": "model-00002-of-00005.safetensors",
68
- "transformer.h.18.input_layernorm.weight": "model-00002-of-00005.safetensors",
69
- "transformer.h.18.mlp.downscale.weight": "model-00002-of-00005.safetensors",
70
- "transformer.h.18.mlp.upscale.weight": "model-00002-of-00005.safetensors",
71
- "transformer.h.18.self_attention.dense.weight": "model-00002-of-00005.safetensors",
72
- "transformer.h.18.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
73
- "transformer.h.19.input_layernorm.bias": "model-00002-of-00005.safetensors",
74
- "transformer.h.19.input_layernorm.weight": "model-00002-of-00005.safetensors",
75
- "transformer.h.19.mlp.downscale.weight": "model-00002-of-00005.safetensors",
76
- "transformer.h.19.mlp.upscale.weight": "model-00002-of-00005.safetensors",
77
- "transformer.h.19.self_attention.dense.weight": "model-00002-of-00005.safetensors",
78
- "transformer.h.19.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
79
- "transformer.h.2.input_layernorm.bias": "model-00001-of-00005.safetensors",
80
- "transformer.h.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
81
- "transformer.h.2.mlp.downscale.weight": "model-00001-of-00005.safetensors",
82
- "transformer.h.2.mlp.upscale.weight": "model-00001-of-00005.safetensors",
83
- "transformer.h.2.self_attention.dense.weight": "model-00001-of-00005.safetensors",
84
- "transformer.h.2.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
85
- "transformer.h.20.input_layernorm.bias": "model-00002-of-00005.safetensors",
86
- "transformer.h.20.input_layernorm.weight": "model-00002-of-00005.safetensors",
87
- "transformer.h.20.mlp.downscale.weight": "model-00002-of-00005.safetensors",
88
- "transformer.h.20.mlp.upscale.weight": "model-00002-of-00005.safetensors",
89
- "transformer.h.20.self_attention.dense.weight": "model-00002-of-00005.safetensors",
90
- "transformer.h.20.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
91
- "transformer.h.21.input_layernorm.bias": "model-00002-of-00005.safetensors",
92
- "transformer.h.21.input_layernorm.weight": "model-00002-of-00005.safetensors",
93
- "transformer.h.21.mlp.downscale.weight": "model-00002-of-00005.safetensors",
94
- "transformer.h.21.mlp.upscale.weight": "model-00002-of-00005.safetensors",
95
- "transformer.h.21.self_attention.dense.weight": "model-00002-of-00005.safetensors",
96
- "transformer.h.21.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
97
- "transformer.h.22.input_layernorm.bias": "model-00002-of-00005.safetensors",
98
- "transformer.h.22.input_layernorm.weight": "model-00002-of-00005.safetensors",
99
- "transformer.h.22.mlp.downscale.weight": "model-00002-of-00005.safetensors",
100
- "transformer.h.22.mlp.upscale.weight": "model-00002-of-00005.safetensors",
101
- "transformer.h.22.self_attention.dense.weight": "model-00002-of-00005.safetensors",
102
- "transformer.h.22.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
103
- "transformer.h.23.input_layernorm.bias": "model-00002-of-00005.safetensors",
104
- "transformer.h.23.input_layernorm.weight": "model-00002-of-00005.safetensors",
105
- "transformer.h.23.mlp.downscale.weight": "model-00002-of-00005.safetensors",
106
- "transformer.h.23.mlp.upscale.weight": "model-00002-of-00005.safetensors",
107
- "transformer.h.23.self_attention.dense.weight": "model-00002-of-00005.safetensors",
108
- "transformer.h.23.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
109
- "transformer.h.24.input_layernorm.bias": "model-00002-of-00005.safetensors",
110
- "transformer.h.24.input_layernorm.weight": "model-00002-of-00005.safetensors",
111
- "transformer.h.24.mlp.downscale.weight": "model-00002-of-00005.safetensors",
112
- "transformer.h.24.mlp.upscale.weight": "model-00002-of-00005.safetensors",
113
- "transformer.h.24.self_attention.dense.weight": "model-00002-of-00005.safetensors",
114
- "transformer.h.24.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
115
- "transformer.h.25.input_layernorm.bias": "model-00002-of-00005.safetensors",
116
- "transformer.h.25.input_layernorm.weight": "model-00002-of-00005.safetensors",
117
- "transformer.h.25.mlp.downscale.weight": "model-00002-of-00005.safetensors",
118
- "transformer.h.25.mlp.upscale.weight": "model-00002-of-00005.safetensors",
119
- "transformer.h.25.self_attention.dense.weight": "model-00002-of-00005.safetensors",
120
- "transformer.h.25.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
121
- "transformer.h.26.input_layernorm.bias": "model-00003-of-00005.safetensors",
122
- "transformer.h.26.input_layernorm.weight": "model-00003-of-00005.safetensors",
123
- "transformer.h.26.mlp.downscale.weight": "model-00003-of-00005.safetensors",
124
- "transformer.h.26.mlp.upscale.weight": "model-00002-of-00005.safetensors",
125
- "transformer.h.26.self_attention.dense.weight": "model-00002-of-00005.safetensors",
126
- "transformer.h.26.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
127
- "transformer.h.27.input_layernorm.bias": "model-00003-of-00005.safetensors",
128
- "transformer.h.27.input_layernorm.weight": "model-00003-of-00005.safetensors",
129
- "transformer.h.27.mlp.downscale.weight": "model-00003-of-00005.safetensors",
130
- "transformer.h.27.mlp.upscale.weight": "model-00003-of-00005.safetensors",
131
- "transformer.h.27.self_attention.dense.weight": "model-00003-of-00005.safetensors",
132
- "transformer.h.27.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
133
- "transformer.h.28.input_layernorm.bias": "model-00003-of-00005.safetensors",
134
- "transformer.h.28.input_layernorm.weight": "model-00003-of-00005.safetensors",
135
- "transformer.h.28.mlp.downscale.weight": "model-00003-of-00005.safetensors",
136
- "transformer.h.28.mlp.upscale.weight": "model-00003-of-00005.safetensors",
137
- "transformer.h.28.self_attention.dense.weight": "model-00003-of-00005.safetensors",
138
- "transformer.h.28.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
139
- "transformer.h.29.input_layernorm.bias": "model-00003-of-00005.safetensors",
140
- "transformer.h.29.input_layernorm.weight": "model-00003-of-00005.safetensors",
141
- "transformer.h.29.mlp.downscale.weight": "model-00003-of-00005.safetensors",
142
- "transformer.h.29.mlp.upscale.weight": "model-00003-of-00005.safetensors",
143
- "transformer.h.29.self_attention.dense.weight": "model-00003-of-00005.safetensors",
144
- "transformer.h.29.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
145
- "transformer.h.3.input_layernorm.bias": "model-00001-of-00005.safetensors",
146
- "transformer.h.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
147
- "transformer.h.3.mlp.downscale.weight": "model-00001-of-00005.safetensors",
148
- "transformer.h.3.mlp.upscale.weight": "model-00001-of-00005.safetensors",
149
- "transformer.h.3.self_attention.dense.weight": "model-00001-of-00005.safetensors",
150
- "transformer.h.3.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
151
- "transformer.h.30.input_layernorm.bias": "model-00003-of-00005.safetensors",
152
- "transformer.h.30.input_layernorm.weight": "model-00003-of-00005.safetensors",
153
- "transformer.h.30.mlp.downscale.weight": "model-00003-of-00005.safetensors",
154
- "transformer.h.30.mlp.upscale.weight": "model-00003-of-00005.safetensors",
155
- "transformer.h.30.self_attention.dense.weight": "model-00003-of-00005.safetensors",
156
- "transformer.h.30.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
157
- "transformer.h.31.input_layernorm.bias": "model-00003-of-00005.safetensors",
158
- "transformer.h.31.input_layernorm.weight": "model-00003-of-00005.safetensors",
159
- "transformer.h.31.mlp.downscale.weight": "model-00003-of-00005.safetensors",
160
- "transformer.h.31.mlp.upscale.weight": "model-00003-of-00005.safetensors",
161
- "transformer.h.31.self_attention.dense.weight": "model-00003-of-00005.safetensors",
162
- "transformer.h.31.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
163
- "transformer.h.32.input_layernorm.bias": "model-00003-of-00005.safetensors",
164
- "transformer.h.32.input_layernorm.weight": "model-00003-of-00005.safetensors",
165
- "transformer.h.32.mlp.downscale.weight": "model-00003-of-00005.safetensors",
166
- "transformer.h.32.mlp.upscale.weight": "model-00003-of-00005.safetensors",
167
- "transformer.h.32.self_attention.dense.weight": "model-00003-of-00005.safetensors",
168
- "transformer.h.32.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
169
- "transformer.h.33.input_layernorm.bias": "model-00003-of-00005.safetensors",
170
- "transformer.h.33.input_layernorm.weight": "model-00003-of-00005.safetensors",
171
- "transformer.h.33.mlp.downscale.weight": "model-00003-of-00005.safetensors",
172
- "transformer.h.33.mlp.upscale.weight": "model-00003-of-00005.safetensors",
173
- "transformer.h.33.self_attention.dense.weight": "model-00003-of-00005.safetensors",
174
- "transformer.h.33.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
175
- "transformer.h.34.input_layernorm.bias": "model-00003-of-00005.safetensors",
176
- "transformer.h.34.input_layernorm.weight": "model-00003-of-00005.safetensors",
177
- "transformer.h.34.mlp.downscale.weight": "model-00003-of-00005.safetensors",
178
- "transformer.h.34.mlp.upscale.weight": "model-00003-of-00005.safetensors",
179
- "transformer.h.34.self_attention.dense.weight": "model-00003-of-00005.safetensors",
180
- "transformer.h.34.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
181
- "transformer.h.35.input_layernorm.bias": "model-00003-of-00005.safetensors",
182
- "transformer.h.35.input_layernorm.weight": "model-00003-of-00005.safetensors",
183
- "transformer.h.35.mlp.downscale.weight": "model-00003-of-00005.safetensors",
184
- "transformer.h.35.mlp.upscale.weight": "model-00003-of-00005.safetensors",
185
- "transformer.h.35.self_attention.dense.weight": "model-00003-of-00005.safetensors",
186
- "transformer.h.35.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
187
- "transformer.h.36.input_layernorm.bias": "model-00003-of-00005.safetensors",
188
- "transformer.h.36.input_layernorm.weight": "model-00003-of-00005.safetensors",
189
- "transformer.h.36.mlp.downscale.weight": "model-00003-of-00005.safetensors",
190
- "transformer.h.36.mlp.upscale.weight": "model-00003-of-00005.safetensors",
191
- "transformer.h.36.self_attention.dense.weight": "model-00003-of-00005.safetensors",
192
- "transformer.h.36.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
193
- "transformer.h.37.input_layernorm.bias": "model-00003-of-00005.safetensors",
194
- "transformer.h.37.input_layernorm.weight": "model-00003-of-00005.safetensors",
195
- "transformer.h.37.mlp.downscale.weight": "model-00003-of-00005.safetensors",
196
- "transformer.h.37.mlp.upscale.weight": "model-00003-of-00005.safetensors",
197
- "transformer.h.37.self_attention.dense.weight": "model-00003-of-00005.safetensors",
198
- "transformer.h.37.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
199
- "transformer.h.38.input_layernorm.bias": "model-00003-of-00005.safetensors",
200
- "transformer.h.38.input_layernorm.weight": "model-00003-of-00005.safetensors",
201
- "transformer.h.38.mlp.downscale.weight": "model-00003-of-00005.safetensors",
202
- "transformer.h.38.mlp.upscale.weight": "model-00003-of-00005.safetensors",
203
- "transformer.h.38.self_attention.dense.weight": "model-00003-of-00005.safetensors",
204
- "transformer.h.38.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
205
- "transformer.h.39.input_layernorm.bias": "model-00003-of-00005.safetensors",
206
- "transformer.h.39.input_layernorm.weight": "model-00003-of-00005.safetensors",
207
- "transformer.h.39.mlp.downscale.weight": "model-00003-of-00005.safetensors",
208
- "transformer.h.39.mlp.upscale.weight": "model-00003-of-00005.safetensors",
209
- "transformer.h.39.self_attention.dense.weight": "model-00003-of-00005.safetensors",
210
- "transformer.h.39.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
211
- "transformer.h.4.input_layernorm.bias": "model-00001-of-00005.safetensors",
212
- "transformer.h.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
213
- "transformer.h.4.mlp.downscale.weight": "model-00001-of-00005.safetensors",
214
- "transformer.h.4.mlp.upscale.weight": "model-00001-of-00005.safetensors",
215
- "transformer.h.4.self_attention.dense.weight": "model-00001-of-00005.safetensors",
216
- "transformer.h.4.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
217
- "transformer.h.40.input_layernorm.bias": "model-00004-of-00005.safetensors",
218
- "transformer.h.40.input_layernorm.weight": "model-00004-of-00005.safetensors",
219
- "transformer.h.40.mlp.downscale.weight": "model-00004-of-00005.safetensors",
220
- "transformer.h.40.mlp.upscale.weight": "model-00003-of-00005.safetensors",
221
- "transformer.h.40.self_attention.dense.weight": "model-00003-of-00005.safetensors",
222
- "transformer.h.40.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
223
- "transformer.h.41.input_layernorm.bias": "model-00004-of-00005.safetensors",
224
- "transformer.h.41.input_layernorm.weight": "model-00004-of-00005.safetensors",
225
- "transformer.h.41.mlp.downscale.weight": "model-00004-of-00005.safetensors",
226
- "transformer.h.41.mlp.upscale.weight": "model-00004-of-00005.safetensors",
227
- "transformer.h.41.self_attention.dense.weight": "model-00004-of-00005.safetensors",
228
- "transformer.h.41.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
229
- "transformer.h.42.input_layernorm.bias": "model-00004-of-00005.safetensors",
230
- "transformer.h.42.input_layernorm.weight": "model-00004-of-00005.safetensors",
231
- "transformer.h.42.mlp.downscale.weight": "model-00004-of-00005.safetensors",
232
- "transformer.h.42.mlp.upscale.weight": "model-00004-of-00005.safetensors",
233
- "transformer.h.42.self_attention.dense.weight": "model-00004-of-00005.safetensors",
234
- "transformer.h.42.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
235
- "transformer.h.43.input_layernorm.bias": "model-00004-of-00005.safetensors",
236
- "transformer.h.43.input_layernorm.weight": "model-00004-of-00005.safetensors",
237
- "transformer.h.43.mlp.downscale.weight": "model-00004-of-00005.safetensors",
238
- "transformer.h.43.mlp.upscale.weight": "model-00004-of-00005.safetensors",
239
- "transformer.h.43.self_attention.dense.weight": "model-00004-of-00005.safetensors",
240
- "transformer.h.43.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
241
- "transformer.h.44.input_layernorm.bias": "model-00004-of-00005.safetensors",
242
- "transformer.h.44.input_layernorm.weight": "model-00004-of-00005.safetensors",
243
- "transformer.h.44.mlp.downscale.weight": "model-00004-of-00005.safetensors",
244
- "transformer.h.44.mlp.upscale.weight": "model-00004-of-00005.safetensors",
245
- "transformer.h.44.self_attention.dense.weight": "model-00004-of-00005.safetensors",
246
- "transformer.h.44.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
247
- "transformer.h.45.input_layernorm.bias": "model-00004-of-00005.safetensors",
248
- "transformer.h.45.input_layernorm.weight": "model-00004-of-00005.safetensors",
249
- "transformer.h.45.mlp.downscale.weight": "model-00004-of-00005.safetensors",
250
- "transformer.h.45.mlp.upscale.weight": "model-00004-of-00005.safetensors",
251
- "transformer.h.45.self_attention.dense.weight": "model-00004-of-00005.safetensors",
252
- "transformer.h.45.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
253
- "transformer.h.46.input_layernorm.bias": "model-00004-of-00005.safetensors",
254
- "transformer.h.46.input_layernorm.weight": "model-00004-of-00005.safetensors",
255
- "transformer.h.46.mlp.downscale.weight": "model-00004-of-00005.safetensors",
256
- "transformer.h.46.mlp.upscale.weight": "model-00004-of-00005.safetensors",
257
- "transformer.h.46.self_attention.dense.weight": "model-00004-of-00005.safetensors",
258
- "transformer.h.46.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
259
- "transformer.h.47.input_layernorm.bias": "model-00004-of-00005.safetensors",
260
- "transformer.h.47.input_layernorm.weight": "model-00004-of-00005.safetensors",
261
- "transformer.h.47.mlp.downscale.weight": "model-00004-of-00005.safetensors",
262
- "transformer.h.47.mlp.upscale.weight": "model-00004-of-00005.safetensors",
263
- "transformer.h.47.self_attention.dense.weight": "model-00004-of-00005.safetensors",
264
- "transformer.h.47.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
265
- "transformer.h.48.input_layernorm.bias": "model-00004-of-00005.safetensors",
266
- "transformer.h.48.input_layernorm.weight": "model-00004-of-00005.safetensors",
267
- "transformer.h.48.mlp.downscale.weight": "model-00004-of-00005.safetensors",
268
- "transformer.h.48.mlp.upscale.weight": "model-00004-of-00005.safetensors",
269
- "transformer.h.48.self_attention.dense.weight": "model-00004-of-00005.safetensors",
270
- "transformer.h.48.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
271
- "transformer.h.49.input_layernorm.bias": "model-00004-of-00005.safetensors",
272
- "transformer.h.49.input_layernorm.weight": "model-00004-of-00005.safetensors",
273
- "transformer.h.49.mlp.downscale.weight": "model-00004-of-00005.safetensors",
274
- "transformer.h.49.mlp.upscale.weight": "model-00004-of-00005.safetensors",
275
- "transformer.h.49.self_attention.dense.weight": "model-00004-of-00005.safetensors",
276
- "transformer.h.49.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
277
- "transformer.h.5.input_layernorm.bias": "model-00001-of-00005.safetensors",
278
- "transformer.h.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
279
- "transformer.h.5.mlp.downscale.weight": "model-00001-of-00005.safetensors",
280
- "transformer.h.5.mlp.upscale.weight": "model-00001-of-00005.safetensors",
281
- "transformer.h.5.self_attention.dense.weight": "model-00001-of-00005.safetensors",
282
- "transformer.h.5.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
283
- "transformer.h.50.input_layernorm.bias": "model-00004-of-00005.safetensors",
284
- "transformer.h.50.input_layernorm.weight": "model-00004-of-00005.safetensors",
285
- "transformer.h.50.mlp.downscale.weight": "model-00004-of-00005.safetensors",
286
- "transformer.h.50.mlp.upscale.weight": "model-00004-of-00005.safetensors",
287
- "transformer.h.50.self_attention.dense.weight": "model-00004-of-00005.safetensors",
288
- "transformer.h.50.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
289
- "transformer.h.51.input_layernorm.bias": "model-00004-of-00005.safetensors",
290
- "transformer.h.51.input_layernorm.weight": "model-00004-of-00005.safetensors",
291
- "transformer.h.51.mlp.downscale.weight": "model-00004-of-00005.safetensors",
292
- "transformer.h.51.mlp.upscale.weight": "model-00004-of-00005.safetensors",
293
- "transformer.h.51.self_attention.dense.weight": "model-00004-of-00005.safetensors",
294
- "transformer.h.51.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
295
- "transformer.h.52.input_layernorm.bias": "model-00004-of-00005.safetensors",
296
- "transformer.h.52.input_layernorm.weight": "model-00004-of-00005.safetensors",
297
- "transformer.h.52.mlp.downscale.weight": "model-00004-of-00005.safetensors",
298
- "transformer.h.52.mlp.upscale.weight": "model-00004-of-00005.safetensors",
299
- "transformer.h.52.self_attention.dense.weight": "model-00004-of-00005.safetensors",
300
- "transformer.h.52.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
301
- "transformer.h.53.input_layernorm.bias": "model-00004-of-00005.safetensors",
302
- "transformer.h.53.input_layernorm.weight": "model-00004-of-00005.safetensors",
303
- "transformer.h.53.mlp.downscale.weight": "model-00004-of-00005.safetensors",
304
- "transformer.h.53.mlp.upscale.weight": "model-00004-of-00005.safetensors",
305
- "transformer.h.53.self_attention.dense.weight": "model-00004-of-00005.safetensors",
306
- "transformer.h.53.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
307
- "transformer.h.54.input_layernorm.bias": "model-00005-of-00005.safetensors",
308
- "transformer.h.54.input_layernorm.weight": "model-00005-of-00005.safetensors",
309
- "transformer.h.54.mlp.downscale.weight": "model-00005-of-00005.safetensors",
310
- "transformer.h.54.mlp.upscale.weight": "model-00004-of-00005.safetensors",
311
- "transformer.h.54.self_attention.dense.weight": "model-00004-of-00005.safetensors",
312
- "transformer.h.54.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
313
- "transformer.h.55.input_layernorm.bias": "model-00005-of-00005.safetensors",
314
- "transformer.h.55.input_layernorm.weight": "model-00005-of-00005.safetensors",
315
- "transformer.h.55.mlp.downscale.weight": "model-00005-of-00005.safetensors",
316
- "transformer.h.55.mlp.upscale.weight": "model-00005-of-00005.safetensors",
317
- "transformer.h.55.self_attention.dense.weight": "model-00005-of-00005.safetensors",
318
- "transformer.h.55.self_attention.query_key_value.weight": "model-00005-of-00005.safetensors",
319
- "transformer.h.56.input_layernorm.bias": "model-00005-of-00005.safetensors",
320
- "transformer.h.56.input_layernorm.weight": "model-00005-of-00005.safetensors",
321
- "transformer.h.56.mlp.downscale.weight": "model-00005-of-00005.safetensors",
322
- "transformer.h.56.mlp.upscale.weight": "model-00005-of-00005.safetensors",
323
- "transformer.h.56.self_attention.dense.weight": "model-00005-of-00005.safetensors",
324
- "transformer.h.56.self_attention.query_key_value.weight": "model-00005-of-00005.safetensors",
325
- "transformer.h.57.input_layernorm.bias": "model-00005-of-00005.safetensors",
326
- "transformer.h.57.input_layernorm.weight": "model-00005-of-00005.safetensors",
327
- "transformer.h.57.mlp.downscale.weight": "model-00005-of-00005.safetensors",
328
- "transformer.h.57.mlp.upscale.weight": "model-00005-of-00005.safetensors",
329
- "transformer.h.57.self_attention.dense.weight": "model-00005-of-00005.safetensors",
330
- "transformer.h.57.self_attention.query_key_value.weight": "model-00005-of-00005.safetensors",
331
- "transformer.h.58.input_layernorm.bias": "model-00005-of-00005.safetensors",
332
- "transformer.h.58.input_layernorm.weight": "model-00005-of-00005.safetensors",
333
- "transformer.h.58.mlp.downscale.weight": "model-00005-of-00005.safetensors",
334
- "transformer.h.58.mlp.upscale.weight": "model-00005-of-00005.safetensors",
335
- "transformer.h.58.self_attention.dense.weight": "model-00005-of-00005.safetensors",
336
- "transformer.h.58.self_attention.query_key_value.weight": "model-00005-of-00005.safetensors",
337
- "transformer.h.59.input_layernorm.bias": "model-00005-of-00005.safetensors",
338
- "transformer.h.59.input_layernorm.weight": "model-00005-of-00005.safetensors",
339
- "transformer.h.59.mlp.downscale.weight": "model-00005-of-00005.safetensors",
340
- "transformer.h.59.mlp.upscale.weight": "model-00005-of-00005.safetensors",
341
- "transformer.h.59.self_attention.dense.weight": "model-00005-of-00005.safetensors",
342
- "transformer.h.59.self_attention.query_key_value.weight": "model-00005-of-00005.safetensors",
343
- "transformer.h.6.input_layernorm.bias": "model-00001-of-00005.safetensors",
344
- "transformer.h.6.input_layernorm.weight": "model-00001-of-00005.safetensors",
345
- "transformer.h.6.mlp.downscale.weight": "model-00001-of-00005.safetensors",
346
- "transformer.h.6.mlp.upscale.weight": "model-00001-of-00005.safetensors",
347
- "transformer.h.6.self_attention.dense.weight": "model-00001-of-00005.safetensors",
348
- "transformer.h.6.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
349
- "transformer.h.7.input_layernorm.bias": "model-00001-of-00005.safetensors",
350
- "transformer.h.7.input_layernorm.weight": "model-00001-of-00005.safetensors",
351
- "transformer.h.7.mlp.downscale.weight": "model-00001-of-00005.safetensors",
352
- "transformer.h.7.mlp.upscale.weight": "model-00001-of-00005.safetensors",
353
- "transformer.h.7.self_attention.dense.weight": "model-00001-of-00005.safetensors",
354
- "transformer.h.7.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
355
- "transformer.h.8.input_layernorm.bias": "model-00001-of-00005.safetensors",
356
- "transformer.h.8.input_layernorm.weight": "model-00001-of-00005.safetensors",
357
- "transformer.h.8.mlp.downscale.weight": "model-00001-of-00005.safetensors",
358
- "transformer.h.8.mlp.upscale.weight": "model-00001-of-00005.safetensors",
359
- "transformer.h.8.self_attention.dense.weight": "model-00001-of-00005.safetensors",
360
- "transformer.h.8.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
361
- "transformer.h.9.input_layernorm.bias": "model-00001-of-00005.safetensors",
362
- "transformer.h.9.input_layernorm.weight": "model-00001-of-00005.safetensors",
363
- "transformer.h.9.mlp.downscale.weight": "model-00001-of-00005.safetensors",
364
- "transformer.h.9.mlp.upscale.weight": "model-00001-of-00005.safetensors",
365
- "transformer.h.9.self_attention.dense.weight": "model-00001-of-00005.safetensors",
366
- "transformer.h.9.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
367
- "transformer.ln_f.bias": "model-00005-of-00005.safetensors",
368
- "transformer.ln_f.weight": "model-00005-of-00005.safetensors",
369
- "transformer.word_embeddings.weight": "model-00001-of-00005.safetensors"
370
- }
371
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/modeling_falcon-checkpoint.py DELETED
@@ -1,1670 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """PyTorch Falcon model."""
16
-
17
- import math
18
- import warnings
19
- from typing import TYPE_CHECKING, Optional, Tuple, Union
20
-
21
- import torch
22
- import torch.utils.checkpoint
23
- from torch import nn
24
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
25
- from torch.nn import functional as F
26
-
27
- from transformers.modeling_attn_mask_utils import (
28
- AttentionMaskConverter,
29
- _prepare_4d_causal_attention_mask,
30
- _prepare_4d_causal_attention_mask_for_sdpa,
31
- )
32
- from transformers.modeling_outputs import (
33
- BaseModelOutputWithPastAndCrossAttentions,
34
- CausalLMOutputWithCrossAttentions,
35
- QuestionAnsweringModelOutput,
36
- SequenceClassifierOutputWithPast,
37
- TokenClassifierOutput,
38
- )
39
- from transformers.modeling_utils import PreTrainedModel
40
- from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0
41
- from transformers.utils import (
42
- add_code_sample_docstrings,
43
- add_start_docstrings,
44
- add_start_docstrings_to_model_forward,
45
- is_flash_attn_2_available,
46
- is_flash_attn_greater_or_equal_2_10,
47
- logging,
48
- )
49
- from .configuration_falcon import FalconConfig
50
-
51
-
52
- if TYPE_CHECKING:
53
- from transformers.configuration_utils import PretrainedConfig
54
-
55
- if is_flash_attn_2_available():
56
- from flash_attn import flash_attn_func, flash_attn_varlen_func
57
- from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
58
-
59
- logger = logging.get_logger(__name__)
60
-
61
- FALCON_PRETRAINED_MODEL_ARCHIVE_LIST = [
62
- "tiiuae/falcon-40b",
63
- "tiiuae/falcon-40b-instruct",
64
- "tiiuae/falcon-7b",
65
- "tiiuae/falcon-7b-instruct",
66
- "tiiuae/falcon-rw-7b",
67
- "tiiuae/falcon-rw-1b",
68
- ]
69
- _CHECKPOINT_FOR_DOC = "Rocketknight1/falcon-rw-1b"
70
- _CONFIG_FOR_DOC = "FalconConfig"
71
-
72
-
73
- # NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
74
- # In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
75
- class FalconLinear(nn.Linear):
76
- def forward(self, input: torch.Tensor) -> torch.Tensor:
77
- hidden_states = input @ self.weight.T
78
- if self.bias is None:
79
- return hidden_states
80
- return hidden_states + self.bias
81
-
82
-
83
- # Copied from transformers.models.llama.modeling_llama.rotate_half
84
- def rotate_half(x):
85
- """Rotates half the hidden dims of the input."""
86
- x1 = x[..., : x.shape[-1] // 2]
87
- x2 = x[..., x.shape[-1] // 2 :]
88
- return torch.cat((-x2, x1), dim=-1)
89
-
90
-
91
- # Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
92
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
93
- """Applies Rotary Position Embedding to the query and key tensors.
94
-
95
- Args:
96
- q (`torch.Tensor`): The query tensor.
97
- k (`torch.Tensor`): The key tensor.
98
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
99
- sin (`torch.Tensor`): The sine part of the rotary embedding.
100
- position_ids (`torch.Tensor`):
101
- The position indices of the tokens corresponding to the query and key tensors. For example, this can be
102
- used to pass offsetted position ids when working with a KV-cache.
103
- unsqueeze_dim (`int`, *optional*, defaults to 1):
104
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
105
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
106
- that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
107
- k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
108
- cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
109
- the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
110
- Returns:
111
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
112
- """
113
- cos = cos[position_ids].unsqueeze(unsqueeze_dim)
114
- sin = sin[position_ids].unsqueeze(unsqueeze_dim)
115
- q_embed = (q * cos) + (rotate_half(q) * sin)
116
- k_embed = (k * cos) + (rotate_half(k) * sin)
117
- return q_embed, k_embed
118
-
119
-
120
- @torch.jit.script
121
- def get_max_seqlen_in_batch(attention_mask: torch.Tensor) -> torch.Tensor:
122
- max_num = int(torch.max(attention_mask).item())
123
- batch_size, _ = attention_mask.shape
124
- counts = torch.zeros((batch_size, max_num), dtype=torch.int32)
125
-
126
- for i in range(1, max_num + 1):
127
- mask = attention_mask == i
128
- counts[:, i - 1] = torch.sum(mask, dim=-1).to(dtype=torch.int32)
129
-
130
- result = counts.flatten()
131
- nonzero_indices = torch.nonzero(result).squeeze(-1)
132
- return result[nonzero_indices]
133
-
134
-
135
- @torch.jit.script
136
- def _get_unpad_data(attention_mask: torch.Tensor):
137
- device = attention_mask.device
138
- seqlens_in_batch = get_max_seqlen_in_batch(attention_mask)
139
- indices = torch.nonzero(attention_mask.flatten()).flatten()
140
- max_seqlen_in_batch = seqlens_in_batch.max().item()
141
- cu_seqlens = (
142
- F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
143
- .to(device=device)
144
- .detach()
145
- )
146
- return (
147
- indices,
148
- cu_seqlens,
149
- max_seqlen_in_batch,
150
- )
151
-
152
- # Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Falcon
153
- class FalconRotaryEmbedding(nn.Module):
154
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
155
- super().__init__()
156
-
157
- self.dim = dim
158
- self.max_position_embeddings = max_position_embeddings
159
- self.base = base
160
- inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
161
- self.register_buffer("inv_freq", inv_freq, persistent=False)
162
-
163
- # Build here to make `torch.jit.trace` work.
164
- self._set_cos_sin_cache(
165
- seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
166
- )
167
-
168
- def _set_cos_sin_cache(self, seq_len, device, dtype):
169
- self.max_seq_len_cached = seq_len
170
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
171
-
172
- freqs = torch.outer(t, self.inv_freq)
173
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
174
- emb = torch.cat((freqs, freqs), dim=-1)
175
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
176
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
177
-
178
- def forward(self, x, seq_len=None):
179
- # x: [bs, num_attention_heads, seq_len, head_size]
180
- if seq_len > self.max_seq_len_cached:
181
- self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
182
-
183
- return (
184
- self.cos_cached[:seq_len].to(dtype=x.dtype),
185
- self.sin_cached[:seq_len].to(dtype=x.dtype),
186
- )
187
-
188
-
189
- # copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Falcon
190
- # TODO @joao no longer copied from LLama after static cache, fix me (copied -> Copied)
191
- class FalconLinearScalingRotaryEmbedding(FalconRotaryEmbedding):
192
- """FalconRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
193
-
194
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
195
- self.scaling_factor = scaling_factor
196
- super().__init__(dim, max_position_embeddings, base, device)
197
-
198
- def _set_cos_sin_cache(self, seq_len, device, dtype):
199
- self.max_seq_len_cached = seq_len
200
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
201
- t = t / self.scaling_factor
202
-
203
- freqs = torch.outer(t, self.inv_freq)
204
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
205
- emb = torch.cat((freqs, freqs), dim=-1)
206
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
207
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
208
-
209
-
210
- # copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Falcon
211
- # TODO @joao no longer copied from LLama after static cache, fix me (copied -> Copied)
212
- class FalconDynamicNTKScalingRotaryEmbedding(FalconRotaryEmbedding):
213
- """FalconRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
214
-
215
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
216
- self.scaling_factor = scaling_factor
217
- super().__init__(dim, max_position_embeddings, base, device)
218
-
219
- def _set_cos_sin_cache(self, seq_len, device, dtype):
220
- self.max_seq_len_cached = seq_len
221
-
222
- if seq_len > self.max_position_embeddings:
223
- base = self.base * (
224
- (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
225
- ) ** (self.dim / (self.dim - 2))
226
- inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
227
- self.register_buffer("inv_freq", inv_freq, persistent=False)
228
-
229
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
230
-
231
- freqs = torch.outer(t, self.inv_freq)
232
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
233
- emb = torch.cat((freqs, freqs), dim=-1)
234
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
235
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
236
-
237
-
238
- def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
239
- batch_size, seq_length = attention_mask.shape
240
- closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
241
- base = torch.tensor(
242
- 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
243
- )
244
- powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
245
- slopes = torch.pow(base, powers)
246
-
247
- if closest_power_of_2 != num_heads:
248
- extra_base = torch.tensor(
249
- 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
250
- )
251
- num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
252
- extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
253
- slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
254
-
255
- # Note: alibi will added to the attention bias that will be applied to the query, key product of attention
256
- # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
257
- # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
258
- # => the query_length dimension will then be broadcasted correctly
259
- # This is more or less identical to T5's relative position bias:
260
- # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
261
- arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
262
- alibi = slopes[..., None].bfloat16() * arange_tensor
263
- return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
264
-
265
-
266
- # Copied from transformers.models.bloom.modeling_bloom.dropout_add
267
- def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
268
- """
269
- Dropout add function
270
-
271
- Args:
272
- x (`torch.tensor`, *required*):
273
- input tensor
274
- residual (`torch.tensor`, *required*):
275
- residual tensor
276
- prob (`float`, *required*):
277
- dropout probability
278
- training (`bool`, *required*):
279
- training mode
280
- """
281
- out = F.dropout(x, p=prob, training=training)
282
- out = residual + out
283
- return out
284
-
285
-
286
- class FalconAttention(nn.Module):
287
- def __init__(self, config: FalconConfig):
288
- super().__init__()
289
-
290
- self.config = config
291
- self.hidden_size = config.hidden_size
292
- self.num_heads = config.num_attention_heads
293
- self.head_dim = self.hidden_size // self.num_heads
294
- self.split_size = self.hidden_size
295
- self.hidden_dropout = config.hidden_dropout
296
- self.max_position_embeddings = config.max_position_embeddings
297
- self.rope_theta = config.rope_theta
298
- self.is_causal = True
299
- self._use_sdpa = config._attn_implementation == "sdpa"
300
-
301
- if self.head_dim * self.num_heads != self.hidden_size:
302
- raise ValueError(
303
- f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
304
- f" {self.num_heads})."
305
- )
306
-
307
- if config.rotary:
308
- self._init_rope()
309
-
310
- # Layer-wise attention scaling
311
- self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
312
- self.beta = self.inv_norm_factor
313
- if config.new_decoder_architecture:
314
- qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim
315
- elif config.multi_query:
316
- qkv_out_dim = self.hidden_size + 2 * self.head_dim
317
- else:
318
- qkv_out_dim = 3 * self.hidden_size
319
- self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias)
320
- self.new_decoder_architecture = config.new_decoder_architecture
321
- self.multi_query = config.multi_query
322
- self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias)
323
- self.attention_dropout = nn.Dropout(config.attention_dropout)
324
- self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1
325
-
326
- # Copied from transformers.models.llama.modeling_llama.LlamaAttention._init_rope with Llama->Falcon
327
- def _init_rope(self):
328
- if self.config.rope_scaling is None:
329
- self.rotary_emb = FalconRotaryEmbedding(
330
- self.head_dim,
331
- max_position_embeddings=self.max_position_embeddings,
332
- base=self.rope_theta,
333
- )
334
- else:
335
- scaling_type = self.config.rope_scaling["type"]
336
- scaling_factor = self.config.rope_scaling["factor"]
337
- if scaling_type == "linear":
338
- self.rotary_emb = FalconLinearScalingRotaryEmbedding(
339
- self.head_dim,
340
- max_position_embeddings=self.max_position_embeddings,
341
- scaling_factor=scaling_factor,
342
- base=self.rope_theta,
343
- )
344
- elif scaling_type == "dynamic":
345
- self.rotary_emb = FalconDynamicNTKScalingRotaryEmbedding(
346
- self.head_dim,
347
- max_position_embeddings=self.max_position_embeddings,
348
- scaling_factor=scaling_factor,
349
- base=self.rope_theta,
350
- )
351
- else:
352
- raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
353
-
354
- def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
355
- """
356
- Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv`
357
-
358
- Args:
359
- fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
360
-
361
- Returns:
362
- query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
363
- value: [batch_size, seq_length, num_heads, head_dim]
364
- """
365
- if self.new_decoder_architecture:
366
- batch, seq_len, _ = fused_qkv.shape
367
- qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv_heads + 2, self.head_dim)
368
- query = qkv[:, :, :, :-2]
369
- key = qkv[:, :, :, [-2]]
370
- value = qkv[:, :, :, [-1]]
371
- key = torch.broadcast_to(key, query.shape)
372
- value = torch.broadcast_to(value, query.shape)
373
-
374
- query, key, value = [x.flatten(2, 3) for x in (query, key, value)]
375
- return query, key, value
376
- elif not self.multi_query:
377
- batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
378
- fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
379
- return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
380
- else:
381
- batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
382
- fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim)
383
- return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :]
384
-
385
- # Copied from transformers.models.bloom.modeling_bloom.BloomAttention._merge_heads
386
- def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
387
- """
388
- Merge heads together over the last dimension
389
-
390
- Args:
391
- x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
392
-
393
- Returns:
394
- torch.tensor: [batch_size, seq_length, num_heads * head_dim]
395
- """
396
- # What we want to achieve is:
397
- # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
398
- batch_size_and_num_heads, seq_length, _ = x.shape
399
- batch_size = batch_size_and_num_heads // self.num_heads
400
-
401
- # First view to decompose the batch size
402
- # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
403
- x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
404
-
405
- # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
406
- x = x.permute(0, 2, 1, 3)
407
-
408
- # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
409
- return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
410
-
411
- def forward(
412
- self,
413
- hidden_states: torch.Tensor,
414
- alibi: Optional[torch.Tensor],
415
- attention_mask: torch.Tensor,
416
- position_ids: Optional[torch.LongTensor] = None,
417
- layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
418
- head_mask: Optional[torch.Tensor] = None,
419
- use_cache: bool = False,
420
- output_attentions: bool = False,
421
- **kwargs,
422
- ):
423
- if "padding_mask" in kwargs:
424
- warnings.warn(
425
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
426
- )
427
-
428
- fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
429
- num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
430
- # 3 x [batch_size, seq_length, num_heads, head_dim]
431
- (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
432
-
433
- batch_size, query_length, _, _ = query_layer.shape
434
-
435
- query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim)
436
- key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
437
- value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
438
-
439
- kv_seq_len = key_layer.shape[-2]
440
- if layer_past is not None:
441
- kv_seq_len += layer_past[0].shape[-2]
442
- if alibi is None:
443
- cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len)
444
- query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids)
445
-
446
- if layer_past is not None:
447
- past_key, past_value = layer_past
448
- # concatenate along seq_length dimension:
449
- # - key: [batch_size, self.num_heads, kv_length, head_dim]
450
- # - value: [batch_size, self.num_heads, kv_length, head_dim]
451
- key_layer = torch.cat((past_key, key_layer), dim=-2)
452
- value_layer = torch.cat((past_value, value_layer), dim=-2)
453
-
454
- kv_length = key_layer.shape[-2]
455
- if use_cache:
456
- present = (key_layer, value_layer)
457
- else:
458
- present = None
459
-
460
- if self._use_sdpa and query_layer.device.type == "cuda" and attention_mask is not None:
461
- # For torch<=2.1.2, SDPA with memory-efficient backend is bugged with non-contiguous inputs with custom attn_mask,
462
- # Reference: https://github.com/pytorch/pytorch/issues/112577.
463
- query_layer = query_layer.contiguous()
464
- key_layer = key_layer.contiguous()
465
- value_layer = value_layer.contiguous()
466
-
467
- if alibi is None:
468
- if self._use_sdpa and not output_attentions:
469
- attn_output = F.scaled_dot_product_attention(
470
- query_layer,
471
- key_layer,
472
- value_layer,
473
- attention_mask,
474
- 0.0,
475
- # The query_length > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case query_length == 1.
476
- is_causal=self.is_causal and attention_mask is None and query_length > 1,
477
- )
478
-
479
- attention_scores = None
480
- else:
481
- attention_scores = query_layer @ key_layer.transpose(-1, -2)
482
- attention_scores /= math.sqrt(self.head_dim)
483
-
484
- attention_scores = F.softmax(attention_scores + attention_mask, dim=-1, dtype=hidden_states.dtype)
485
- # It is unclear why neither dropout nor head_mask is applied here (while it is with alibi).
486
- attn_output = attention_scores @ value_layer
487
-
488
- attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
489
- attn_output = attn_output.permute(0, 2, 1, 3)
490
- attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
491
-
492
- attn_output = self.dense(attn_output)
493
-
494
- if output_attentions:
495
- return attn_output, present, attention_scores
496
- else:
497
- return attn_output, present
498
-
499
- else:
500
- if self._use_sdpa and not output_attentions and head_mask is None:
501
- attn_output = F.scaled_dot_product_attention(
502
- query_layer,
503
- key_layer,
504
- value_layer,
505
- attn_mask=attention_mask,
506
- dropout_p=self.attention_dropout.p if self.training else 0.0,
507
- is_causal=self.is_causal and attention_mask is None and query_length > 1,
508
- )
509
- attn_output = attn_output.transpose(1, 2)
510
- attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
511
-
512
- attn_output = self.dense(attn_output)
513
- else:
514
- matmul_result = query_layer @ key_layer.transpose(-1, -2)
515
-
516
- # change view to [batch_size, num_heads, q_length, kv_length]
517
- attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length)
518
-
519
- # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
520
- input_dtype = attention_scores.dtype
521
- # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
522
- if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
523
- attention_scores = attention_scores.to(torch.float32)
524
-
525
- attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
526
- attention_logits *= self.inv_norm_factor
527
- attention_probs = F.softmax(attention_logits + attention_mask, dim=-1, dtype=hidden_states.dtype)
528
- # [batch_size, num_heads, q_length, kv_length]
529
- attention_probs = self.attention_dropout(attention_probs)
530
-
531
- if head_mask is not None:
532
- attention_probs = attention_probs * head_mask
533
-
534
- # change view [batch_size, num_heads, q_length, kv_length]
535
- attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length)
536
-
537
- # matmul: [batch_size * num_heads, q_length, head_dim]
538
- attn_output = (attention_probs_reshaped @ value_layer).flatten(0, 1)
539
-
540
- # change view [batch_size, q_length, num_heads * head_dim]
541
- attn_output = self._merge_heads(attn_output)
542
-
543
- attn_output = self.dense(attn_output)
544
-
545
- if output_attentions:
546
- return attn_output, present, attention_probs
547
- else:
548
- return attn_output, present
549
-
550
-
551
- class FalconFlashAttention2(FalconAttention):
552
- """
553
- Falcon flash attention module. This module inherits from `FalconAttention` as the weights of the module stays
554
- untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
555
- flash attention and deal with padding tokens in case the input contains any of them.
556
- """
557
-
558
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
559
- def __init__(self, *args, **kwargs):
560
- super().__init__(*args, **kwargs)
561
-
562
- # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
563
- # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
564
- # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
565
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
566
-
567
- def forward(
568
- self,
569
- hidden_states: torch.Tensor,
570
- alibi: Optional[torch.Tensor],
571
- attention_mask: torch.Tensor,
572
- position_ids: Optional[torch.LongTensor] = None,
573
- layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
574
- head_mask: Optional[torch.Tensor] = None,
575
- use_cache: bool = False,
576
- output_attentions: bool = False,
577
- **kwargs,
578
- ):
579
- if "padding_mask" in kwargs:
580
- warnings.warn(
581
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
582
- )
583
-
584
- # overwrite attention_mask with padding_mask
585
- attention_mask = kwargs.pop("padding_mask")
586
-
587
- fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
588
- num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
589
- # 3 x [batch_size, seq_length, num_heads, head_dim]
590
- (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
591
-
592
- batch_size, query_length, _, _ = query_layer.shape
593
-
594
- query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim)
595
- key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
596
- value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
597
-
598
- kv_seq_len = key_layer.shape[-2]
599
- if layer_past is not None:
600
- kv_seq_len += layer_past[0].shape[-2]
601
- if alibi is None:
602
- cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len)
603
- query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids)
604
-
605
- if layer_past is not None and use_cache:
606
- past_key, past_value = layer_past
607
- # concatenate along seq_length dimension:
608
- # - key: [batch_size, self.num_heads, kv_length, head_dim]
609
- # - value: [batch_size, self.num_heads, kv_length, head_dim]
610
- key_layer = torch.cat((past_key, key_layer), dim=-2)
611
- value_layer = torch.cat((past_value, value_layer), dim=-2)
612
-
613
- past_key_value = (key_layer, value_layer) if use_cache else None
614
-
615
- # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
616
- # to be able to avoid many of these transpose/reshape/view.
617
- query_layer = query_layer.transpose(1, 2)
618
- key_layer = key_layer.transpose(1, 2)
619
- value_layer = value_layer.transpose(1, 2)
620
-
621
- if alibi is not None:
622
- raise ValueError("`alibi` is not supported when `use_flash_attn` is True")
623
-
624
- attn_dropout = self.config.attention_dropout if self.training else 0.0
625
-
626
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
627
- # therefore the input hidden states gets silently casted in float32. Hence, we need
628
- # cast them back in float16 just to be sure everything works as expected.
629
- input_dtype = query_layer.dtype
630
- if input_dtype == torch.float32:
631
- if torch.is_autocast_enabled():
632
- target_dtype = torch.get_autocast_gpu_dtype()
633
- # Handle the case where the model is quantized
634
- elif hasattr(self.config, "_pre_quantization_dtype"):
635
- target_dtype = self.config._pre_quantization_dtype
636
- else:
637
- target_dtype = self.query_key_value.weight.dtype
638
-
639
- logger.warning_once(
640
- f"The input hidden states seems to be silently casted in float32, this might be related to"
641
- f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
642
- f" {target_dtype}."
643
- )
644
-
645
- query_layer = query_layer.to(target_dtype)
646
- key_layer = key_layer.to(target_dtype)
647
- value_layer = value_layer.to(target_dtype)
648
-
649
- attn_output = self._flash_attention_forward(
650
- query_layer, key_layer, value_layer, attention_mask, query_length, dropout=attn_dropout
651
- )
652
-
653
- attn_weights = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
654
- attn_output = self.dense(attn_weights)
655
-
656
- if not output_attentions:
657
- attn_weights = None
658
-
659
- return attn_output, past_key_value, attn_weights
660
-
661
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
662
- def _flash_attention_forward(
663
- self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
664
- ):
665
- """
666
- Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
667
- first unpad the input, then computes the attention scores and pad the final attention scores.
668
-
669
- Args:
670
- query_states (`torch.Tensor`):
671
- Input query states to be passed to Flash Attention API
672
- key_states (`torch.Tensor`):
673
- Input key states to be passed to Flash Attention API
674
- value_states (`torch.Tensor`):
675
- Input value states to be passed to Flash Attention API
676
- attention_mask (`torch.Tensor`):
677
- The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
678
- position of padding tokens and 1 for the position of non-padding tokens.
679
- dropout (`float`):
680
- Attention dropout
681
- softmax_scale (`float`, *optional*):
682
- The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
683
- """
684
- if not self._flash_attn_uses_top_left_mask:
685
- causal = self.is_causal
686
- else:
687
- # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
688
- causal = self.is_causal and query_length != 1
689
-
690
- # Contains at least one padding token in the sequence
691
- if attention_mask is not None:
692
- batch_size = query_states.shape[0]
693
- query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
694
- query_states, key_states, value_states, attention_mask, query_length
695
- )
696
-
697
- cu_seqlens_q, cu_seqlens_k = cu_seq_lens
698
- max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
699
-
700
- attn_output_unpad = flash_attn_varlen_func(
701
- query_states,
702
- key_states,
703
- value_states,
704
- cu_seqlens_q=cu_seqlens_q,
705
- cu_seqlens_k=cu_seqlens_k,
706
- max_seqlen_q=max_seqlen_in_batch_q,
707
- max_seqlen_k=max_seqlen_in_batch_k,
708
- dropout_p=dropout,
709
- softmax_scale=softmax_scale,
710
- causal=causal,
711
- )
712
-
713
- attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
714
- else:
715
- attn_output = flash_attn_func(
716
- query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
717
- )
718
-
719
- return attn_output
720
-
721
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
722
- def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
723
- indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
724
- batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
725
-
726
- key_layer = index_first_axis(
727
- key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
728
- )
729
- value_layer = index_first_axis(
730
- value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
731
- )
732
- if query_length == kv_seq_len:
733
- query_layer = index_first_axis(
734
- query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
735
- )
736
- cu_seqlens_q = cu_seqlens_k
737
- max_seqlen_in_batch_q = max_seqlen_in_batch_k
738
- indices_q = indices_k
739
- elif query_length == 1:
740
- max_seqlen_in_batch_q = 1
741
- cu_seqlens_q = torch.arange(
742
- batch_size + 1, dtype=torch.int32, device=query_layer.device
743
- ) # There is a memcpy here, that is very bad.
744
- indices_q = cu_seqlens_q[:-1]
745
- query_layer = query_layer.squeeze(1)
746
- else:
747
- # The -q_len: slice assumes left padding.
748
- attention_mask = attention_mask[:, -query_length:]
749
- query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
750
-
751
- return (
752
- query_layer,
753
- key_layer,
754
- value_layer,
755
- indices_q,
756
- (cu_seqlens_q, cu_seqlens_k),
757
- (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
758
- )
759
-
760
-
761
- class FalconMLP(nn.Module):
762
- def __init__(self, config: FalconConfig):
763
- super().__init__()
764
- hidden_size = config.hidden_size
765
-
766
- self.upscale = FalconLinear(
767
- hidden_size, config.ff_factor * hidden_size, bias=config.bias
768
- )
769
- self.act = nn.GELU()
770
- self.downscale = FalconLinear(
771
- config.ff_factor * hidden_size, hidden_size, bias=config.bias
772
- )
773
- self.hidden_dropout = config.hidden_dropout
774
-
775
- def forward(self, x: torch.Tensor) -> torch.Tensor:
776
- x = self.act(self.upscale(x))
777
- x = self.downscale(x)
778
- return x
779
-
780
- FALCON_ATTENTION_CLASSES = {
781
- "eager": FalconAttention,
782
- "sdpa": FalconAttention, # FalconAttention originally implemented both a forward with & without SDPA
783
- "flash_attention_2": FalconFlashAttention2,
784
- }
785
-
786
-
787
- class FalconDecoderLayer(nn.Module):
788
- def __init__(self, config: FalconConfig):
789
- super().__init__()
790
- hidden_size = config.hidden_size
791
- self.num_heads = config.num_attention_heads
792
-
793
- self.self_attention = FALCON_ATTENTION_CLASSES[config._attn_implementation](config)
794
- self.mlp = FalconMLP(config)
795
- self.hidden_dropout = config.hidden_dropout
796
- self.config = config
797
-
798
- if config.new_decoder_architecture and config.num_ln_in_parallel_attn == 2:
799
- # The layer norm before self-attention
800
- self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
801
- # The layer norm before the MLP
802
- self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
803
- else:
804
- self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
805
- if not config.parallel_attn:
806
- self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
807
-
808
- def forward(
809
- self,
810
- hidden_states: torch.Tensor,
811
- alibi: Optional[torch.Tensor],
812
- attention_mask: torch.Tensor,
813
- position_ids: Optional[torch.LongTensor] = None,
814
- layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
815
- head_mask: Optional[torch.Tensor] = None,
816
- use_cache: bool = False,
817
- output_attentions: bool = False,
818
- **kwargs,
819
- ):
820
- if "padding_mask" in kwargs:
821
- warnings.warn(
822
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
823
- )
824
-
825
- residual = hidden_states
826
-
827
- if self.config.num_ln_in_parallel_attn == 2:
828
- attention_layernorm_out = self.ln_attn(hidden_states)
829
- mlp_layernorm_out = self.ln_mlp(hidden_states)
830
- else:
831
- attention_layernorm_out = self.input_layernorm(hidden_states)
832
-
833
- # Self attention.
834
- attn_outputs = self.self_attention(
835
- attention_layernorm_out,
836
- layer_past=layer_past,
837
- attention_mask=attention_mask,
838
- position_ids=position_ids,
839
- alibi=alibi,
840
- head_mask=head_mask,
841
- use_cache=use_cache,
842
- output_attentions=output_attentions,
843
- **kwargs,
844
- )
845
-
846
- attention_output = attn_outputs[0]
847
-
848
- if self.config.num_ln_in_parallel_attn == 1:
849
- if self.config.parallel_attn:
850
- mlp_layernorm_out = attention_layernorm_out
851
- else:
852
- residual = dropout_add(
853
- attention_output, residual, self.config.attention_dropout, training=self.training
854
- )
855
- mlp_layernorm_out = self.post_attention_layernorm(residual)
856
-
857
- outputs = attn_outputs[1:]
858
-
859
- # MLP.
860
- mlp_output = self.mlp(mlp_layernorm_out)
861
-
862
- if self.config.new_decoder_architecture or self.config.parallel_attn:
863
- mlp_output += attention_output
864
-
865
- output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training)
866
-
867
- if use_cache:
868
- outputs = (output,) + outputs
869
- else:
870
- outputs = (output,) + outputs[1:]
871
-
872
- return outputs # hidden_states, present, attentions
873
-
874
-
875
- FALCON_START_DOCSTRING = r"""
876
-
877
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
878
- library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
879
-
880
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
881
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
882
- and behavior.
883
-
884
- Parameters:
885
- config ([`FalconConfig`]): Model configuration class with all the parameters of the model.
886
- Initializing with a config file does not load the weights associated with the model, only the
887
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
888
- """
889
-
890
- FALCON_INPUTS_DOCSTRING = r"""
891
- Args:
892
- input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
893
- `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
894
- (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
895
-
896
- If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
897
- `input_ids`.
898
-
899
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
900
- [`PreTrainedTokenizer.__call__`] for details.
901
-
902
- [What are input IDs?](../glossary#input-ids)
903
- past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_hidden_layers`):
904
- Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
905
- `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
906
- their past given to this model should not be passed as `input_ids` as they have already been computed.
907
-
908
- Each element of `past_key_values` is a tuple (past_key, past_value):
909
- - past_key: [batch_size * num_heads, head_dim, kv_length]
910
- - past_value: [batch_size * num_heads, kv_length, head_dim]
911
- attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
912
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
913
-
914
- - 1 for tokens that are **not masked**,
915
- - 0 for tokens that are **masked**.
916
-
917
- [What are attention masks?](../glossary#attention-mask)
918
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
919
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
920
- config.n_positions - 1]`.
921
-
922
- [What are position IDs?](../glossary#position-ids)
923
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
924
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
925
-
926
- - 1 indicates the head is **not masked**,
927
- - 0 indicates the head is **masked**.
928
-
929
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
930
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
931
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
932
- model's internal embedding lookup matrix.
933
-
934
- If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
935
- `past_key_values`).
936
- use_cache (`bool`, *optional*):
937
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
938
- `past_key_values`).
939
- output_attentions (`bool`, *optional*):
940
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
941
- tensors for more detail.
942
- output_hidden_states (`bool`, *optional*):
943
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
944
- more detail.
945
- return_dict (`bool`, *optional*):
946
- Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
947
- """
948
-
949
-
950
- class FalconPreTrainedModel(PreTrainedModel):
951
- """
952
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
953
- models.
954
- """
955
-
956
- config_class = FalconConfig
957
- base_model_prefix = "transformer"
958
- supports_gradient_checkpointing = True
959
- _no_split_modules = ["FalconDecoderLayer"]
960
- _supports_flash_attn_2 = True
961
- _supports_sdpa = True
962
-
963
- def __init__(self, *inputs, **kwargs):
964
- super().__init__(*inputs, **kwargs)
965
-
966
- def _init_weights(self, module: nn.Module):
967
- """Initialize the weights."""
968
- if isinstance(module, nn.Linear) or isinstance(module, FalconLinear):
969
- # Slightly different from the TF version which uses truncated_normal for initialization
970
- # cf https://github.com/pytorch/pytorch/pull/5617
971
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
972
- if module.bias is not None:
973
- module.bias.data.zero_()
974
- elif isinstance(module, nn.Embedding):
975
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
976
- if module.padding_idx is not None:
977
- module.weight.data[module.padding_idx].zero_()
978
- elif isinstance(module, LayerNorm):
979
- module.bias.data.zero_()
980
- module.weight.data.fill_(1.0)
981
-
982
- # Adapted from transformers.modeling_utils.PreTrainedModel._check_and_enable_sdpa
983
- @classmethod
984
- def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> "PretrainedConfig":
985
- # NOTE: Falcon supported SDPA from PyTorch 2.0. We keep it like that for backward compatibility (automatically use SDPA for torch>=2.0).
986
- if hard_check_only:
987
- if not is_torch_greater_or_equal_than_2_0:
988
- raise ImportError("PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.0.")
989
-
990
- if not is_torch_greater_or_equal_than_2_0:
991
- return config
992
-
993
- _is_bettertransformer = getattr(cls, "use_bettertransformer", False)
994
- if _is_bettertransformer:
995
- return config
996
-
997
- if not hard_check_only:
998
- config._attn_implementation = "sdpa"
999
- return config
1000
-
1001
-
1002
- @add_start_docstrings(
1003
- "The bare Falcon Model transformer outputting raw hidden-states without any specific head on top.",
1004
- FALCON_START_DOCSTRING,
1005
- )
1006
- class FalconModel(FalconPreTrainedModel):
1007
- def __init__(self, config: FalconConfig):
1008
- super().__init__(config)
1009
-
1010
- self.embed_dim = config.hidden_size
1011
- self.num_heads = config.num_attention_heads
1012
- self.use_alibi = config.alibi
1013
-
1014
- # Embedding + LN Embedding
1015
- self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
1016
-
1017
- # Transformer blocks
1018
- self.h = nn.ModuleList([FalconDecoderLayer(config) for _ in range(config.num_hidden_layers)])
1019
- self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1020
- self._use_sdpa = config._attn_implementation == "sdpa"
1021
-
1022
- # Final Layer Norm
1023
- self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
1024
-
1025
- self.gradient_checkpointing = False
1026
-
1027
- # Initialize weights and apply final processing
1028
- self.post_init()
1029
-
1030
- def get_input_embeddings(self):
1031
- return self.word_embeddings
1032
-
1033
- def set_input_embeddings(self, new_embeddings: torch.Tensor):
1034
- self.word_embeddings = new_embeddings
1035
-
1036
- @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
1037
- @add_code_sample_docstrings(
1038
- checkpoint=_CHECKPOINT_FOR_DOC,
1039
- output_type=BaseModelOutputWithPastAndCrossAttentions,
1040
- config_class=_CONFIG_FOR_DOC,
1041
- )
1042
- def forward(
1043
- self,
1044
- input_ids: Optional[torch.LongTensor] = None,
1045
- past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1046
- attention_mask: Optional[torch.Tensor] = None,
1047
- position_ids: Optional[torch.LongTensor] = None,
1048
- head_mask: Optional[torch.LongTensor] = None,
1049
- inputs_embeds: Optional[torch.LongTensor] = None,
1050
- use_cache: Optional[bool] = None,
1051
- output_attentions: Optional[bool] = None,
1052
- output_hidden_states: Optional[bool] = None,
1053
- return_dict: Optional[bool] = None,
1054
- ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
1055
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1056
- output_hidden_states = (
1057
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1058
- )
1059
- use_cache = use_cache if use_cache is not None else self.config.use_cache
1060
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1061
-
1062
- if input_ids is not None and inputs_embeds is not None:
1063
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1064
- elif input_ids is not None:
1065
- batch_size, seq_length = input_ids.shape
1066
- elif inputs_embeds is not None:
1067
- batch_size, seq_length, _ = inputs_embeds.shape
1068
- else:
1069
- raise ValueError("You have to specify either input_ids or inputs_embeds")
1070
-
1071
- if past_key_values is None:
1072
- past_key_values = tuple([None] * len(self.h))
1073
-
1074
- if inputs_embeds is None:
1075
- inputs_embeds = self.word_embeddings(input_ids)
1076
-
1077
- hidden_states = inputs_embeds
1078
-
1079
- if self.gradient_checkpointing and self.training:
1080
- if use_cache:
1081
- logger.warning(
1082
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1083
- )
1084
- use_cache = False
1085
- presents = () if use_cache else None
1086
- all_self_attentions = () if output_attentions else None
1087
- all_hidden_states = () if output_hidden_states else None
1088
-
1089
- # Compute alibi tensor: check build_alibi_tensor documentation
1090
- past_key_values_length = 0
1091
- if past_key_values[0] is not None:
1092
- past_key_values_length = past_key_values[0][0].shape[-2]
1093
-
1094
- if self.use_alibi:
1095
- mask = (
1096
- torch.ones(
1097
- (batch_size, seq_length + past_key_values_length), device=inputs_embeds.device, dtype=torch.long
1098
- )
1099
- if attention_mask is None
1100
- else attention_mask
1101
- )
1102
- alibi = build_alibi_tensor(mask, self.num_heads, dtype=hidden_states.dtype)
1103
- else:
1104
- alibi = None
1105
- if position_ids is None:
1106
- device = input_ids.device if input_ids is not None else inputs_embeds.device
1107
- position_ids = torch.arange(
1108
- past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1109
- )
1110
- position_ids = position_ids.unsqueeze(0)
1111
-
1112
- if self._use_flash_attention_2:
1113
- # 2d mask is passed through the layers
1114
- attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1115
- elif self._use_sdpa and not output_attentions:
1116
- # output_attentions=True can not be supported when using SDPA, and we fall back on
1117
- # the manual implementation that requires a 4D causal mask in all cases.
1118
- if alibi is None:
1119
- attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1120
- attention_mask,
1121
- (batch_size, seq_length),
1122
- inputs_embeds,
1123
- past_key_values_length,
1124
- )
1125
- elif head_mask is None:
1126
- alibi = alibi.reshape(batch_size, -1, *alibi.shape[1:])
1127
-
1128
- attention_mask_2d = attention_mask
1129
- # We don't call _prepare_4d_causal_attention_mask_for_sdpa as we need to mask alibi using the 4D attention_mask untouched.
1130
- attention_mask = _prepare_4d_causal_attention_mask(
1131
- attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1132
- )
1133
-
1134
- # We take care to integrate alibi bias in the attention_mask here.
1135
- if attention_mask_2d is None:
1136
- attention_mask = alibi / math.sqrt(self.config.hidden_size // self.num_heads)
1137
- else:
1138
- min_dtype = torch.finfo(alibi.dtype).min
1139
- attention_mask = torch.masked_fill(
1140
- alibi / math.sqrt(self.config.hidden_size // self.num_heads),
1141
- attention_mask < -1,
1142
- min_dtype,
1143
- )
1144
-
1145
- # From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend
1146
- # produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213
1147
- if seq_length > 1 and attention_mask.device.type == "cuda":
1148
- attention_mask = AttentionMaskConverter._unmask_unattended(attention_mask, min_dtype=min_dtype)
1149
- else:
1150
- # PyTorch SDPA does not support head_mask, we fall back on the eager implementation in this case.
1151
- attention_mask = _prepare_4d_causal_attention_mask(
1152
- attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1153
- )
1154
- else:
1155
- # 4d mask is passed through the layers
1156
- attention_mask = _prepare_4d_causal_attention_mask(
1157
- attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1158
- )
1159
-
1160
- # Prepare head mask if needed
1161
- # 1.0 in head_mask indicate we keep the head
1162
- # attention_probs has shape batch_size x num_heads x N x N
1163
- # head_mask has shape n_layer x batch x num_heads x N x N
1164
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
1165
-
1166
- for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
1167
- if output_hidden_states:
1168
- all_hidden_states = all_hidden_states + (hidden_states,)
1169
-
1170
- if self.gradient_checkpointing and self.training:
1171
- outputs = self._gradient_checkpointing_func(
1172
- block.__call__,
1173
- hidden_states,
1174
- alibi,
1175
- attention_mask,
1176
- position_ids,
1177
- head_mask[i],
1178
- layer_past,
1179
- use_cache,
1180
- output_attentions,
1181
- )
1182
- else:
1183
- outputs = block(
1184
- hidden_states,
1185
- layer_past=layer_past,
1186
- attention_mask=attention_mask,
1187
- position_ids=position_ids,
1188
- head_mask=head_mask[i],
1189
- use_cache=use_cache,
1190
- output_attentions=output_attentions,
1191
- alibi=alibi,
1192
- )
1193
-
1194
- hidden_states = outputs[0]
1195
- if use_cache is True:
1196
- presents = presents + (outputs[1],)
1197
-
1198
- if output_attentions:
1199
- all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
1200
-
1201
- # Add last hidden state
1202
- hidden_states = self.ln_f(hidden_states)
1203
-
1204
- if output_hidden_states:
1205
- all_hidden_states = all_hidden_states + (hidden_states,)
1206
-
1207
- if not return_dict:
1208
- return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
1209
-
1210
- return BaseModelOutputWithPastAndCrossAttentions(
1211
- last_hidden_state=hidden_states,
1212
- past_key_values=presents,
1213
- hidden_states=all_hidden_states,
1214
- attentions=all_self_attentions,
1215
- )
1216
-
1217
-
1218
- @add_start_docstrings(
1219
- "The Falcon Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).",
1220
- FALCON_START_DOCSTRING,
1221
- )
1222
- class FalconForCausalLM(FalconPreTrainedModel):
1223
- _tied_weights_keys = None # ["lm_head.weight"]
1224
-
1225
- def __init__(self, config: FalconConfig):
1226
- super().__init__(config)
1227
- self.transformer = FalconModel(config)
1228
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1229
-
1230
- # Initialize weights and apply final processing
1231
- self.post_init()
1232
-
1233
- def get_output_embeddings(self):
1234
- return self.lm_head
1235
-
1236
- def set_output_embeddings(self, new_embeddings: torch.Tensor):
1237
- self.lm_head = new_embeddings
1238
-
1239
- def prepare_inputs_for_generation(
1240
- self,
1241
- input_ids: torch.LongTensor,
1242
- past_key_values: Optional[torch.Tensor] = None,
1243
- attention_mask: Optional[torch.Tensor] = None,
1244
- position_ids: Optional[torch.Tensor] = None,
1245
- **kwargs,
1246
- ) -> dict:
1247
- if past_key_values is not None:
1248
- past_length = past_key_values[0][0].shape[2]
1249
-
1250
- # Some generation methods already pass only the last input ID
1251
- if input_ids.shape[1] > past_length:
1252
- remove_prefix_length = past_length
1253
- else:
1254
- # Default to old behavior: keep only final ID
1255
- remove_prefix_length = input_ids.shape[1] - 1
1256
-
1257
- input_ids = input_ids[:, remove_prefix_length:]
1258
-
1259
- # Note: versions of Falcon with alibi do not use position_ids. It is used with RoPE.
1260
- if not self.transformer.use_alibi and attention_mask is not None and position_ids is None:
1261
- # create position_ids on the fly for batch generation
1262
- position_ids = attention_mask.long().cumsum(-1) - 1
1263
- position_ids.masked_fill_(attention_mask == 0, 1)
1264
- if past_key_values:
1265
- position_ids = position_ids[:, -input_ids.shape[1] :]
1266
-
1267
- return {
1268
- "input_ids": input_ids,
1269
- "position_ids": position_ids,
1270
- "past_key_values": past_key_values,
1271
- "use_cache": kwargs.get("use_cache"),
1272
- "attention_mask": attention_mask,
1273
- }
1274
-
1275
- @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
1276
- @add_code_sample_docstrings(
1277
- checkpoint=_CHECKPOINT_FOR_DOC,
1278
- output_type=CausalLMOutputWithCrossAttentions,
1279
- config_class=_CONFIG_FOR_DOC,
1280
- )
1281
- def forward(
1282
- self,
1283
- input_ids: Optional[torch.LongTensor] = None,
1284
- past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1285
- attention_mask: Optional[torch.Tensor] = None,
1286
- position_ids: Optional[torch.LongTensor] = None,
1287
- head_mask: Optional[torch.Tensor] = None,
1288
- inputs_embeds: Optional[torch.Tensor] = None,
1289
- labels: Optional[torch.Tensor] = None,
1290
- use_cache: Optional[bool] = None,
1291
- output_attentions: Optional[bool] = None,
1292
- output_hidden_states: Optional[bool] = None,
1293
- return_dict: Optional[bool] = None,
1294
- ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
1295
- r"""
1296
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1297
- Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1298
- `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
1299
- are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
1300
- """
1301
-
1302
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1303
-
1304
- transformer_outputs = self.transformer(
1305
- input_ids,
1306
- past_key_values=past_key_values,
1307
- attention_mask=attention_mask,
1308
- position_ids=position_ids,
1309
- head_mask=head_mask,
1310
- inputs_embeds=inputs_embeds,
1311
- use_cache=use_cache,
1312
- output_attentions=output_attentions,
1313
- output_hidden_states=output_hidden_states,
1314
- return_dict=return_dict,
1315
- )
1316
- hidden_states = transformer_outputs[0]
1317
-
1318
- lm_logits = self.lm_head(hidden_states)
1319
-
1320
- loss = None
1321
- if labels is not None:
1322
- # Shift so that tokens < n predict n
1323
- shift_logits = lm_logits[..., :-1, :].contiguous()
1324
- shift_labels = labels[..., 1:].contiguous()
1325
- batch_size, seq_length, vocab_size = shift_logits.shape
1326
- # Flatten the tokens
1327
- loss_fct = CrossEntropyLoss()
1328
- loss = loss_fct(
1329
- shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
1330
- )
1331
-
1332
- if not return_dict:
1333
- output = (lm_logits,) + transformer_outputs[1:]
1334
- return ((loss,) + output) if loss is not None else output
1335
-
1336
- return CausalLMOutputWithCrossAttentions(
1337
- loss=loss,
1338
- logits=lm_logits,
1339
- past_key_values=transformer_outputs.past_key_values,
1340
- hidden_states=transformer_outputs.hidden_states,
1341
- attentions=transformer_outputs.attentions,
1342
- )
1343
-
1344
- def _reorder_cache(
1345
- self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
1346
- ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
1347
- """
1348
- This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1349
- [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1350
- beam_idx at every generation step.
1351
-
1352
- Output shares the same memory storage as `past`.
1353
- """
1354
-
1355
- # Get a copy of `beam_idx` on all the devices where we need those indices.
1356
- device_to_beam_idx = {
1357
- past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
1358
- }
1359
- reordered_past = tuple(
1360
- (
1361
- layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
1362
- layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
1363
- )
1364
- for layer_past in past
1365
- )
1366
- return reordered_past
1367
-
1368
-
1369
- @add_start_docstrings(
1370
- """
1371
- The Falcon Model transformer with a sequence classification head on top (linear layer).
1372
-
1373
- [`FalconForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1374
- (e.g. GPT-1) do.
1375
-
1376
- Since it does classification on the last token, it requires to know the position of the last token. If a
1377
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1378
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1379
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1380
- each row of the batch).
1381
- """,
1382
- FALCON_START_DOCSTRING,
1383
- )
1384
- class FalconForSequenceClassification(FalconPreTrainedModel):
1385
- def __init__(self, config: FalconConfig):
1386
- super().__init__(config)
1387
- self.num_labels = config.num_labels
1388
- self.transformer = FalconModel(config)
1389
- self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
1390
-
1391
- # Initialize weights and apply final processing
1392
- self.post_init()
1393
-
1394
- @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
1395
- @add_code_sample_docstrings(
1396
- checkpoint=_CHECKPOINT_FOR_DOC,
1397
- output_type=SequenceClassifierOutputWithPast,
1398
- config_class=_CONFIG_FOR_DOC,
1399
- )
1400
- def forward(
1401
- self,
1402
- input_ids: Optional[torch.LongTensor] = None,
1403
- past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1404
- attention_mask: Optional[torch.Tensor] = None,
1405
- head_mask: Optional[torch.Tensor] = None,
1406
- inputs_embeds: Optional[torch.Tensor] = None,
1407
- labels: Optional[torch.Tensor] = None,
1408
- use_cache: Optional[bool] = None,
1409
- output_attentions: Optional[bool] = None,
1410
- output_hidden_states: Optional[bool] = None,
1411
- return_dict: Optional[bool] = None,
1412
- ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
1413
- r"""
1414
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1415
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1416
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1417
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1418
- """
1419
-
1420
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1421
-
1422
- transformer_outputs = self.transformer(
1423
- input_ids,
1424
- past_key_values=past_key_values,
1425
- attention_mask=attention_mask,
1426
- head_mask=head_mask,
1427
- inputs_embeds=inputs_embeds,
1428
- use_cache=use_cache,
1429
- output_attentions=output_attentions,
1430
- output_hidden_states=output_hidden_states,
1431
- return_dict=return_dict,
1432
- )
1433
-
1434
- hidden_states = transformer_outputs[0]
1435
- logits = self.score(hidden_states)
1436
-
1437
- if input_ids is not None:
1438
- batch_size = input_ids.shape[0]
1439
- else:
1440
- batch_size = inputs_embeds.shape[0]
1441
-
1442
- if self.config.pad_token_id is None and batch_size != 1:
1443
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1444
- if self.config.pad_token_id is None:
1445
- sequence_lengths = -1
1446
- else:
1447
- if input_ids is not None:
1448
- # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1449
- sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1450
- sequence_lengths = sequence_lengths % input_ids.shape[-1]
1451
- sequence_lengths = sequence_lengths.to(logits.device)
1452
- else:
1453
- sequence_lengths = -1
1454
- logger.warning(
1455
- f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
1456
- "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
1457
- )
1458
-
1459
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1460
-
1461
- loss = None
1462
- if labels is not None:
1463
- if self.config.problem_type is None:
1464
- if self.num_labels == 1:
1465
- self.config.problem_type = "regression"
1466
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1467
- self.config.problem_type = "single_label_classification"
1468
- else:
1469
- self.config.problem_type = "multi_label_classification"
1470
-
1471
- if self.config.problem_type == "regression":
1472
- loss_fct = MSELoss()
1473
- if self.num_labels == 1:
1474
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1475
- else:
1476
- loss = loss_fct(pooled_logits, labels)
1477
- elif self.config.problem_type == "single_label_classification":
1478
- loss_fct = CrossEntropyLoss()
1479
- loss = loss_fct(pooled_logits, labels)
1480
- elif self.config.problem_type == "multi_label_classification":
1481
- loss_fct = BCEWithLogitsLoss()
1482
- loss = loss_fct(pooled_logits, labels)
1483
- if not return_dict:
1484
- output = (pooled_logits,) + transformer_outputs[1:]
1485
- return ((loss,) + output) if loss is not None else output
1486
-
1487
- return SequenceClassifierOutputWithPast(
1488
- loss=loss,
1489
- logits=pooled_logits,
1490
- past_key_values=transformer_outputs.past_key_values,
1491
- hidden_states=transformer_outputs.hidden_states,
1492
- attentions=transformer_outputs.attentions,
1493
- )
1494
-
1495
-
1496
- @add_start_docstrings(
1497
- """
1498
- Falcon Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1499
- Named-Entity-Recognition (NER) tasks.
1500
- """,
1501
- FALCON_START_DOCSTRING,
1502
- )
1503
- class FalconForTokenClassification(FalconPreTrainedModel):
1504
- def __init__(self, config: FalconConfig):
1505
- super().__init__(config)
1506
- self.num_labels = config.num_labels
1507
-
1508
- self.transformer = FalconModel(config)
1509
- if getattr(config, "classifier_dropout", None) is not None:
1510
- classifier_dropout = config.classifier_dropout
1511
- elif getattr(config, "hidden_dropout", None) is not None:
1512
- classifier_dropout = config.hidden_dropout
1513
- else:
1514
- classifier_dropout = 0.1
1515
- self.dropout = nn.Dropout(classifier_dropout)
1516
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1517
-
1518
- # Initialize weights and apply final processing
1519
- self.post_init()
1520
-
1521
- @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
1522
- @add_code_sample_docstrings(
1523
- checkpoint=_CHECKPOINT_FOR_DOC,
1524
- output_type=TokenClassifierOutput,
1525
- config_class=_CONFIG_FOR_DOC,
1526
- )
1527
- def forward(
1528
- self,
1529
- input_ids: Optional[torch.LongTensor] = None,
1530
- past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1531
- attention_mask: Optional[torch.Tensor] = None,
1532
- head_mask: Optional[torch.Tensor] = None,
1533
- inputs_embeds: Optional[torch.Tensor] = None,
1534
- labels: Optional[torch.Tensor] = None,
1535
- use_cache: Optional[bool] = None,
1536
- output_attentions: Optional[bool] = None,
1537
- output_hidden_states: Optional[bool] = None,
1538
- return_dict: Optional[bool] = None,
1539
- ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1540
- r"""
1541
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1542
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1543
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1544
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1545
- """
1546
-
1547
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1548
-
1549
- transformer_outputs = self.transformer(
1550
- input_ids,
1551
- past_key_values=past_key_values,
1552
- attention_mask=attention_mask,
1553
- head_mask=head_mask,
1554
- inputs_embeds=inputs_embeds,
1555
- use_cache=use_cache,
1556
- output_attentions=output_attentions,
1557
- output_hidden_states=output_hidden_states,
1558
- return_dict=return_dict,
1559
- )
1560
-
1561
- hidden_states = transformer_outputs[0]
1562
- hidden_states = self.dropout(hidden_states)
1563
- logits = self.classifier(hidden_states)
1564
-
1565
- loss = None
1566
- if labels is not None:
1567
- batch_size, seq_length = labels.shape
1568
- loss_fct = CrossEntropyLoss()
1569
- loss = loss_fct(
1570
- logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
1571
- )
1572
-
1573
- if not return_dict:
1574
- output = (logits,) + transformer_outputs[2:]
1575
- return ((loss,) + output) if loss is not None else output
1576
-
1577
- return TokenClassifierOutput(
1578
- loss=loss,
1579
- logits=logits,
1580
- hidden_states=transformer_outputs.hidden_states,
1581
- attentions=transformer_outputs.attentions,
1582
- )
1583
-
1584
-
1585
- @add_start_docstrings(
1586
- """
1587
- The Falcon Model transformer with a span classification head on top for extractive question-answering tasks like
1588
- SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
1589
- """,
1590
- FALCON_START_DOCSTRING,
1591
- )
1592
- class FalconForQuestionAnswering(FalconPreTrainedModel):
1593
- def __init__(self, config):
1594
- super().__init__(config)
1595
- self.transformer = FalconModel(config)
1596
- self.qa_outputs = nn.Linear(config.hidden_size, 2)
1597
-
1598
- # Initialize weights and apply final processing
1599
- self.post_init()
1600
-
1601
- @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
1602
- def forward(
1603
- self,
1604
- input_ids: Optional[torch.LongTensor] = None,
1605
- attention_mask: Optional[torch.FloatTensor] = None,
1606
- head_mask: Optional[torch.FloatTensor] = None,
1607
- inputs_embeds: Optional[torch.FloatTensor] = None,
1608
- start_positions: Optional[torch.LongTensor] = None,
1609
- end_positions: Optional[torch.LongTensor] = None,
1610
- output_attentions: Optional[bool] = None,
1611
- output_hidden_states: Optional[bool] = None,
1612
- return_dict: Optional[bool] = None,
1613
- ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1614
- r"""
1615
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1616
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
1617
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1618
- are not taken into account for computing the loss.
1619
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1620
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
1621
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1622
- are not taken into account for computing the loss.
1623
- """
1624
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1625
-
1626
- outputs = self.transformer(
1627
- input_ids,
1628
- attention_mask=attention_mask,
1629
- head_mask=head_mask,
1630
- inputs_embeds=inputs_embeds,
1631
- output_attentions=output_attentions,
1632
- output_hidden_states=output_hidden_states,
1633
- return_dict=return_dict,
1634
- )
1635
-
1636
- sequence_output = outputs[0]
1637
-
1638
- logits = self.qa_outputs(sequence_output)
1639
- start_logits, end_logits = logits.split(1, dim=-1)
1640
- start_logits = start_logits.squeeze(-1).contiguous()
1641
- end_logits = end_logits.squeeze(-1).contiguous()
1642
-
1643
- total_loss = None
1644
- if start_positions is not None and end_positions is not None:
1645
- # If we are on multi-GPU, split add a dimension
1646
- if len(start_positions.size()) > 1:
1647
- start_positions = start_positions.squeeze(-1)
1648
- if len(end_positions.size()) > 1:
1649
- end_positions = end_positions.squeeze(-1)
1650
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
1651
- ignored_index = start_logits.size(1)
1652
- start_positions = start_positions.clamp(0, ignored_index)
1653
- end_positions = end_positions.clamp(0, ignored_index)
1654
-
1655
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1656
- start_loss = loss_fct(start_logits, start_positions)
1657
- end_loss = loss_fct(end_logits, end_positions)
1658
- total_loss = (start_loss + end_loss) / 2
1659
-
1660
- if not return_dict:
1661
- output = (start_logits, end_logits) + outputs[2:]
1662
- return ((total_loss,) + output) if total_loss is not None else output
1663
-
1664
- return QuestionAnsweringModelOutput(
1665
- loss=total_loss,
1666
- start_logits=start_logits,
1667
- end_logits=end_logits,
1668
- hidden_states=outputs.hidden_states,
1669
- attentions=outputs.attentions,
1670
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/special_tokens_map-checkpoint.json DELETED
@@ -1,24 +0,0 @@
1
- {
2
- "additional_special_tokens": [
3
- ">>TITLE<<",
4
- ">>ABSTRACT<<",
5
- ">>INTRODUCTION<<",
6
- ">>SUMMARY<<",
7
- ">>COMMENT<<",
8
- ">>ANSWER<<",
9
- ">>QUESTION<<",
10
- ">>DOMAIN<<",
11
- ">>PREFIX<<",
12
- ">>SUFFIX<<",
13
- ">>MIDDLE<<"
14
- ],
15
- "bos_token": ">>",
16
- "eos_token": {
17
- "content": "<|endoftext|>",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "pad_token": "<|endoftext|>"
24
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/tokenizer-checkpoint.json DELETED
The diff for this file is too large to render. See raw diff
 
.ipynb_checkpoints/tokenizer_config-checkpoint.json DELETED
@@ -1,135 +0,0 @@
1
- {
2
- "add_prefix_space": false,
3
- "added_tokens_decoder": {
4
- "0": {
5
- "content": ">>TITLE<<",
6
- "lstrip": false,
7
- "normalized": false,
8
- "rstrip": false,
9
- "single_word": false,
10
- "special": true
11
- },
12
- "1": {
13
- "content": ">>ABSTRACT<<",
14
- "lstrip": false,
15
- "normalized": false,
16
- "rstrip": false,
17
- "single_word": false,
18
- "special": true
19
- },
20
- "2": {
21
- "content": ">>INTRODUCTION<<",
22
- "lstrip": false,
23
- "normalized": false,
24
- "rstrip": false,
25
- "single_word": false,
26
- "special": true
27
- },
28
- "3": {
29
- "content": ">>SUMMARY<<",
30
- "lstrip": false,
31
- "normalized": false,
32
- "rstrip": false,
33
- "single_word": false,
34
- "special": true
35
- },
36
- "4": {
37
- "content": ">>COMMENT<<",
38
- "lstrip": false,
39
- "normalized": false,
40
- "rstrip": false,
41
- "single_word": false,
42
- "special": true
43
- },
44
- "5": {
45
- "content": ">>ANSWER<<",
46
- "lstrip": false,
47
- "normalized": false,
48
- "rstrip": false,
49
- "single_word": false,
50
- "special": true
51
- },
52
- "6": {
53
- "content": ">>QUESTION<<",
54
- "lstrip": false,
55
- "normalized": false,
56
- "rstrip": false,
57
- "single_word": false,
58
- "special": true
59
- },
60
- "7": {
61
- "content": ">>DOMAIN<<",
62
- "lstrip": false,
63
- "normalized": false,
64
- "rstrip": false,
65
- "single_word": false,
66
- "special": true
67
- },
68
- "8": {
69
- "content": ">>PREFIX<<",
70
- "lstrip": false,
71
- "normalized": false,
72
- "rstrip": false,
73
- "single_word": false,
74
- "special": true
75
- },
76
- "9": {
77
- "content": ">>SUFFIX<<",
78
- "lstrip": false,
79
- "normalized": false,
80
- "rstrip": false,
81
- "single_word": false,
82
- "special": true
83
- },
84
- "10": {
85
- "content": ">>MIDDLE<<",
86
- "lstrip": false,
87
- "normalized": false,
88
- "rstrip": false,
89
- "single_word": false,
90
- "special": true
91
- },
92
- "11": {
93
- "content": "<|endoftext|>",
94
- "lstrip": false,
95
- "normalized": false,
96
- "rstrip": false,
97
- "single_word": false,
98
- "special": true
99
- },
100
- "500": {
101
- "content": ">>",
102
- "lstrip": false,
103
- "normalized": false,
104
- "rstrip": false,
105
- "single_word": false,
106
- "special": true
107
- }
108
- },
109
- "additional_special_tokens": [
110
- ">>TITLE<<",
111
- ">>ABSTRACT<<",
112
- ">>INTRODUCTION<<",
113
- ">>SUMMARY<<",
114
- ">>COMMENT<<",
115
- ">>ANSWER<<",
116
- ">>QUESTION<<",
117
- ">>DOMAIN<<",
118
- ">>PREFIX<<",
119
- ">>SUFFIX<<",
120
- ">>MIDDLE<<"
121
- ],
122
- "bos_token": ">>",
123
- "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ 'User: \n' + message['content'] }}\n{% elif message['role'] == 'system' %}\n{{ 'System: ' + message['content'] }}\n{% elif message['role'] == 'assistant' %}\n{{ 'Falcon:\n' + message['content']}}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ 'Falcon:' }}\n{% endif %}\n{% endfor %}",
124
- "clean_up_tokenization_spaces": true,
125
- "device_map": "cuda:2",
126
- "eos_token": "<|endoftext|>",
127
- "model_input_names": [
128
- "input_ids",
129
- "attention_mask"
130
- ],
131
- "model_max_length": 1000000000000000019884624838656,
132
- "pad_token": "<|endoftext|>",
133
- "padding_side": "left",
134
- "tokenizer_class": "PreTrainedTokenizerFast"
135
- }