vxbrandon's picture
End of training
25ab377 verified
|
raw
history blame
4.21 kB
metadata
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
  - generated_from_trainer
model-index:
  - name: sparse_mistral_7b_refined_web_50p_2024-04-13
    results: []

sparse_mistral_7b_refined_web_50p_2024-04-13

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2023

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 4
  • seed: 0
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1350

Training results

Training Loss Epoch Step Validation Loss
2.3391 0.01 25 2.4196
2.2711 0.02 50 2.3577
2.3054 0.02 75 2.3158
2.2795 0.03 100 2.2966
2.3175 0.04 125 2.2846
2.2388 0.05 150 2.2766
2.1679 0.06 175 2.2705
2.2996 0.06 200 2.2678
2.2788 0.07 225 2.2647
2.2448 0.08 250 2.2637
2.1837 0.09 275 2.2624
2.2089 0.1 300 2.2621
2.2686 0.1 325 2.2601
2.2254 0.11 350 2.2593
2.162 0.12 375 2.2590
2.2687 0.13 400 2.2563
2.2595 0.14 425 2.2571
2.186 0.14 450 2.2564
2.2689 0.15 475 2.2580
2.2472 0.16 500 2.2554
2.2005 0.17 525 2.2553
2.1983 0.18 550 2.2552
2.2388 0.18 575 2.2547
2.1443 0.19 600 2.2555
2.2198 0.2 625 2.2534
2.3008 0.21 650 2.2536
2.179 0.22 675 2.2521
2.2069 0.22 700 2.2531
2.1819 0.23 725 2.2526
2.1218 0.24 750 2.2536
2.1845 0.25 775 2.2515
2.2167 0.26 800 2.2510
2.2252 0.26 825 2.2520
2.1664 0.27 850 2.2519
2.1853 0.28 875 2.2530
2.1499 0.29 900 2.2513
2.2763 0.3 925 2.2517
2.2528 0.3 950 2.2518
2.2505 0.31 975 2.2500
2.1683 0.32 1000 2.2502
2.2177 0.33 1025 2.2501
2.238 0.34 1050 2.2516
2.193 0.34 1075 2.2507
2.2025 0.35 1100 2.2502
2.0944 0.36 1125 2.2512
2.2272 0.37 1150 2.2508
2.2264 0.38 1175 2.2500
2.1837 0.38 1200 2.2507
2.1444 0.39 1225 2.2489
2.2464 0.4 1250 2.2499
2.1398 0.41 1275 2.2512
2.1929 0.42 1300 2.2502
2.2384 0.42 1325 2.2498
2.223 0.43 1350 2.2481

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0