metadata
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
model-index:
- name: sparse_llama_7b_hf_refined_web_70p_2024-03-25
results: []
sparse_llama_7b_hf_refined_web_70p_2024-03-25
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1856
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 0
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.3676 | 0.01 | 25 | 2.5933 |
2.3572 | 0.02 | 50 | 2.5793 |
2.4503 | 0.02 | 75 | 2.5568 |
2.3803 | 0.03 | 100 | 2.5265 |
2.4451 | 0.04 | 125 | 2.4951 |
2.2793 | 0.05 | 150 | 2.4778 |
2.2444 | 0.06 | 175 | 2.4667 |
2.406 | 0.06 | 200 | 2.4572 |
2.3583 | 0.07 | 225 | 2.4508 |
2.3262 | 0.08 | 250 | 2.4538 |
2.258 | 0.09 | 275 | 2.4476 |
2.2841 | 0.1 | 300 | 2.4456 |
2.3232 | 0.1 | 325 | 2.4379 |
2.2974 | 0.11 | 350 | 2.4353 |
2.2216 | 0.12 | 375 | 2.4379 |
2.3179 | 0.13 | 400 | 2.4340 |
2.3006 | 0.14 | 425 | 2.4333 |
2.2603 | 0.14 | 450 | 2.4333 |
2.3371 | 0.15 | 475 | 2.4384 |
2.3453 | 0.16 | 500 | 2.4328 |
2.254 | 0.17 | 525 | 2.4306 |
2.2423 | 0.18 | 550 | 2.4298 |
2.3666 | 0.18 | 575 | 2.4293 |
2.259 | 0.19 | 600 | 2.4298 |
2.2786 | 0.2 | 625 | 2.4290 |
2.3493 | 0.21 | 650 | 2.4275 |
2.2532 | 0.22 | 675 | 2.4255 |
2.2698 | 0.22 | 700 | 2.4233 |
2.2949 | 0.23 | 725 | 2.4277 |
2.1918 | 0.24 | 750 | 2.4268 |
2.2762 | 0.25 | 775 | 2.4243 |
2.3221 | 0.26 | 800 | 2.4256 |
2.278 | 0.26 | 825 | 2.4273 |
2.2406 | 0.27 | 850 | 2.4223 |
2.2466 | 0.28 | 875 | 2.4252 |
2.2199 | 0.29 | 900 | 2.4247 |
2.4064 | 0.3 | 925 | 2.4259 |
2.3672 | 0.3 | 950 | 2.4237 |
2.3096 | 0.31 | 975 | 2.4226 |
2.1979 | 0.32 | 1000 | 2.4257 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.2