lukeleeai's picture
End of training
a3cd2c9 verified
metadata
tags:
  - trl
  - sft
  - generated_from_trainer
datasets:
  - super_glue
metrics:
  - accuracy
model-index:
  - name: mistral_sparse_80_percent_boolq_1000
    results: []

mistral_sparse_80_percent_boolq_1000

This model is a fine-tuned version of on the super_glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3381
  • Accuracy: 0.8664

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 2
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4991 0.05 50 0.5522 0.7216
0.3812 0.1 100 0.4342 0.8141
0.369 0.15 150 0.4112 0.8170
0.4132 0.2 200 0.4139 0.8382
0.4219 0.25 250 0.3940 0.8339
0.4144 0.3 300 0.3803 0.8481
0.1534 0.35 350 0.3786 0.8516
0.4855 0.4 400 0.3821 0.8502
0.2109 0.45 450 0.3583 0.8516
0.3026 0.5 500 0.3675 0.8558
0.2903 0.55 550 0.3744 0.8537
0.2988 0.6 600 0.3573 0.8587
0.3432 0.65 650 0.3396 0.8657
0.3156 0.7 700 0.3299 0.8671
0.4978 0.75 750 0.3623 0.8657
0.4523 0.8 800 0.3240 0.8700
0.2367 0.85 850 0.3393 0.8678
0.3334 0.9 900 0.3252 0.8834
0.3286 0.95 950 0.3605 0.8742
0.1659 1.0 1000 0.3269 0.8742
0.2373 1.05 1050 0.3256 0.8792
0.5102 1.1 1100 0.3633 0.8749

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0