File size: 2,786 Bytes
61af694 a3cd2c9 61af694 a3cd2c9 61af694 a3cd2c9 61af694 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
tags:
- trl
- sft
- generated_from_trainer
datasets:
- super_glue
metrics:
- accuracy
model-index:
- name: mistral_sparse_80_percent_boolq_1000
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral_sparse_80_percent_boolq_1000
This model is a fine-tuned version of [](https://huggingface.co/) on the super_glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3381
- Accuracy: 0.8664
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 4
- seed: 2
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4991 | 0.05 | 50 | 0.5522 | 0.7216 |
| 0.3812 | 0.1 | 100 | 0.4342 | 0.8141 |
| 0.369 | 0.15 | 150 | 0.4112 | 0.8170 |
| 0.4132 | 0.2 | 200 | 0.4139 | 0.8382 |
| 0.4219 | 0.25 | 250 | 0.3940 | 0.8339 |
| 0.4144 | 0.3 | 300 | 0.3803 | 0.8481 |
| 0.1534 | 0.35 | 350 | 0.3786 | 0.8516 |
| 0.4855 | 0.4 | 400 | 0.3821 | 0.8502 |
| 0.2109 | 0.45 | 450 | 0.3583 | 0.8516 |
| 0.3026 | 0.5 | 500 | 0.3675 | 0.8558 |
| 0.2903 | 0.55 | 550 | 0.3744 | 0.8537 |
| 0.2988 | 0.6 | 600 | 0.3573 | 0.8587 |
| 0.3432 | 0.65 | 650 | 0.3396 | 0.8657 |
| 0.3156 | 0.7 | 700 | 0.3299 | 0.8671 |
| 0.4978 | 0.75 | 750 | 0.3623 | 0.8657 |
| 0.4523 | 0.8 | 800 | 0.3240 | 0.8700 |
| 0.2367 | 0.85 | 850 | 0.3393 | 0.8678 |
| 0.3334 | 0.9 | 900 | 0.3252 | 0.8834 |
| 0.3286 | 0.95 | 950 | 0.3605 | 0.8742 |
| 0.1659 | 1.0 | 1000 | 0.3269 | 0.8742 |
| 0.2373 | 1.05 | 1050 | 0.3256 | 0.8792 |
| 0.5102 | 1.1 | 1100 | 0.3633 | 0.8749 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|