vxbrandon's picture
End of training
4614cac verified
|
raw
history blame
5.73 kB
metadata
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
  - generated_from_trainer
model-index:
  - name: Mistral_Sparse_refined_web_relu_2024-03-11
    results: []

Mistral_Sparse_refined_web_relu_2024-03-11

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3931

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 0
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2100

Training results

Training Loss Epoch Step Validation Loss
8.7876 0.0 25 8.7120
8.1837 0.01 50 8.1741
7.7529 0.01 75 7.8037
7.5336 0.02 100 7.6036
7.1718 0.02 125 7.1058
4.7663 0.02 150 4.7163
3.7548 0.03 175 3.8001
3.2625 0.03 200 3.4192
3.0886 0.04 225 3.2355
2.9928 0.04 250 3.1153
2.8555 0.04 275 3.0392
2.8289 0.05 300 2.9870
2.7933 0.05 325 2.9505
2.6073 0.06 350 2.9160
2.7488 0.06 375 2.8941
2.7795 0.06 400 2.8722
2.7317 0.07 425 2.8537
2.6982 0.07 450 2.8407
2.5823 0.08 475 2.8258
2.6419 0.08 500 2.8164
2.7195 0.08 525 2.8082
2.6239 0.09 550 2.7980
2.7273 0.09 575 2.7869
2.5436 0.1 600 2.7809
2.6159 0.1 625 2.7761
2.6563 0.1 650 2.7666
2.6728 0.11 675 2.7573
2.6047 0.11 700 2.7509
2.6237 0.12 725 2.7493
2.5305 0.12 750 2.7458
2.5329 0.12 775 2.7392
2.6538 0.13 800 2.7359
2.6076 0.13 825 2.7310
2.5928 0.14 850 2.7279
2.455 0.14 875 2.7246
2.5579 0.14 900 2.7252
2.4948 0.15 925 2.7194
2.6219 0.15 950 2.7181
2.5387 0.16 975 2.7139
2.5734 0.16 1000 2.7134
2.6012 0.16 1025 2.7115
2.63 0.17 1050 2.7076
2.6361 0.17 1075 2.7045
2.5534 0.18 1100 2.7046
2.5756 0.18 1125 2.7031
2.5632 0.18 1150 2.6989
2.5971 0.19 1175 2.6960
2.4719 0.19 1200 2.6963
2.5377 0.2 1225 2.6944
2.552 0.2 1250 2.6907
2.5748 0.2 1275 2.6894
2.5799 0.21 1300 2.6877
2.5569 0.21 1325 2.6834
2.4413 0.22 1350 2.6822
2.5232 0.22 1375 2.6822
2.5346 0.22 1400 2.6806
2.479 0.23 1425 2.6791
2.4585 0.23 1450 2.6803
2.4104 0.24 1475 2.6776
2.4961 0.24 1500 2.6792
2.4219 0.24 1525 2.6770
2.4658 0.25 1550 2.6736
2.5875 0.25 1575 2.6755
2.5376 0.26 1600 2.6705
2.5466 0.26 1625 2.6726
2.5889 0.26 1650 2.6704
2.4973 0.27 1675 2.6667
2.5409 0.27 1700 2.6681
2.5386 0.28 1725 2.6658
2.5234 0.28 1750 2.6666
2.5066 0.28 1775 2.6619
2.4283 0.29 1800 2.6629
2.5253 0.29 1825 2.6623
2.5179 0.3 1850 2.6599
2.5023 0.3 1875 2.6608
2.5253 0.3 1900 2.6602
2.5788 0.31 1925 2.6602
2.5307 0.31 1950 2.6596
2.5108 0.32 1975 2.6593
2.462 0.32 2000 2.6597
2.5028 0.32 2025 2.6577
2.48 0.33 2050 2.6538
2.4742 0.33 2075 2.6534
2.554 0.34 2100 2.6544

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0