File size: 2,632 Bytes
0a78f48 24d1dd9 0a78f48 24d1dd9 0a78f48 24d1dd9 0a78f48 24d1dd9 0a78f48 24d1dd9 0a78f48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
config: plus
split: validation
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9419354838709677
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3313
- Accuracy: 0.9419
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00016475242401724032
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 318 | 0.3697 | 0.9132 |
| 1.0928 | 2.0 | 636 | 0.3539 | 0.9226 |
| 1.0928 | 3.0 | 954 | 0.3790 | 0.9281 |
| 0.1164 | 4.0 | 1272 | 0.3579 | 0.9345 |
| 0.0587 | 5.0 | 1590 | 0.3705 | 0.9281 |
| 0.0587 | 6.0 | 1908 | 0.3543 | 0.9410 |
| 0.0344 | 7.0 | 2226 | 0.3665 | 0.9348 |
| 0.0244 | 8.0 | 2544 | 0.3510 | 0.9358 |
| 0.0244 | 9.0 | 2862 | 0.3344 | 0.9423 |
| 0.0153 | 10.0 | 3180 | 0.3335 | 0.9403 |
| 0.0153 | 11.0 | 3498 | 0.3302 | 0.9426 |
| 0.0126 | 12.0 | 3816 | 0.3305 | 0.9423 |
| 0.0103 | 13.0 | 4134 | 0.3301 | 0.9423 |
| 0.0103 | 14.0 | 4452 | 0.3311 | 0.9416 |
| 0.0095 | 15.0 | 4770 | 0.3313 | 0.9419 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.4.0
- Tokenizers 0.19.1
|