File size: 1,905 Bytes
217653d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xls-r-300m-korean-g
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-korean-g

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9226
- Cer: 0.1638

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.8333        | 3.25  | 500  | 3.4624          | 0.9560 |
| 1.243         | 6.49  | 1000 | 1.0049          | 0.2488 |
| 0.3657        | 9.74  | 1500 | 0.8749          | 0.2087 |
| 0.2104        | 12.99 | 2000 | 0.8799          | 0.1909 |
| 0.1508        | 16.23 | 2500 | 0.9321          | 0.1845 |
| 0.1245        | 19.48 | 3000 | 0.8778          | 0.1744 |
| 0.1048        | 22.73 | 3500 | 0.9793          | 0.1808 |
| 0.0922        | 25.97 | 4000 | 0.9464          | 0.1697 |
| 0.0801        | 29.22 | 4500 | 0.9226          | 0.1638 |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.13.0