thevox commited on
Commit
d34dac5
1 Parent(s): e116bbb

Upload cfg.yaml

Browse files
Files changed (1) hide show
  1. cfg.yaml +123 -0
cfg.yaml ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ architecture:
2
+ backbone_dtype: int4
3
+ force_embedding_gradients: false
4
+ gradient_checkpointing: true
5
+ intermediate_dropout: 0.0
6
+ pretrained: true
7
+ pretrained_weights: ''
8
+ augmentation:
9
+ random_parent_probability: 0.0
10
+ skip_parent_probability: 0.0
11
+ token_mask_probability: 0.05
12
+ dataset:
13
+ add_eos_token_to_answer: true
14
+ add_eos_token_to_prompt: true
15
+ add_eos_token_to_system: true
16
+ answer_column: "Kontekst: informasjonsteknologi, tagging, databaseadministrasjon,\
17
+ \ s\xF8k\nOversettelse:\nDefinisjon: (Wikipedia, 2008-08-07). Arbeide med\
18
+ \ koder p\xE5 factline-plattformen: Hvis systemet eller plattformadministratoren\
19
+ \ har aktivert dette, har du muligheten til \xE5 opprette koder. Koder er\
20
+ \ organisert som mapper. 1) Det er mulig \xE5 knytte faktene dine til s\xE5\
21
+ \ mange koder du \xF8nsker. 2) S\xF8k etter koder med 'factlist & search'.\
22
+ \ Innholdet som tilh\xF8rer de tilknyttede kodene vil bli vist. 3) Du kan\
23
+ \ ogs\xE5 s\xF8ke ved \xE5 bruke mer enn \xE9n kode ved \xE5 separere dem\
24
+ \ med komma (,).\nMer naturlig:\nDefinisjon: (Wikipedia, 2008-08-07). Arbeid\
25
+ \ med koder p\xE5 factline-plattformen: Hvis systemet eller plattformadministratoren\
26
+ \ har aktivert denne funksjonen, har du muligheten til \xE5 opprette koder.\
27
+ \ Koder er organisert som mapper. 1) Du kan knytte faktene dine til s\xE5\
28
+ \ mange koder du \xF8nsker. 2) S\xF8k etter koder med 'factlist & search'.\
29
+ \ Innholdet som er knyttet til kodene vil bli vist. 3) Du kan ogs\xE5 s\xF8\
30
+ ke ved \xE5 bruke flere koder samtidig ved \xE5 separere dem med komma (,).\r"
31
+ chatbot_author: H2O.ai
32
+ chatbot_name: h2oGPT
33
+ data_sample: 1.0
34
+ data_sample_choice:
35
+ - Train
36
+ - Validation
37
+ limit_chained_samples: false
38
+ mask_prompt_labels: true
39
+ parent_id_column: None
40
+ personalize: false
41
+ prompt_column:
42
+ - 'Oversett til Norsk:
43
+
44
+ Definition:. (Wikipedia, 2008-08-07). Working with Tags on the factline-platform:.
45
+ If your system or platform administrator activated this , you have the possibility
46
+ to create tags.. In fact tags they are organised like folders.. 1) It is possible
47
+ to link your facts to as many tags you want.. 2) Search for tags with "factlist
48
+ & search". The content belonging to the linked tags will be shown.. 3) Also
49
+ search using more than one tag by separating them with a comma (,).'
50
+ system_column: None
51
+ text_answer_separator: <|answer|>
52
+ text_prompt_start: <|prompt|>
53
+ text_system_start: <|system|>
54
+ train_dataframe: /fp/projects01/ec281/h2o-llmstudio/data/user/en-nb-15k/en-nb-15k.csv
55
+ validation_dataframe: None
56
+ validation_size: 0.04
57
+ validation_strategy: automatic
58
+ environment:
59
+ compile_model: false
60
+ deepspeed_reduce_bucket_size: 1000000
61
+ deepspeed_stage3_param_persistence_threshold: 1000000
62
+ deepspeed_stage3_prefetch_bucket_size: 1000000
63
+ find_unused_parameters: false
64
+ gpus:
65
+ - '0'
66
+ huggingface_branch: main
67
+ mixed_precision: true
68
+ number_of_workers: 8
69
+ seed: -1
70
+ trust_remote_code: true
71
+ use_deepspeed: false
72
+ experiment_name: mist-lang
73
+ llm_backbone: mistralai/Mistral-7B-v0.1
74
+ logging:
75
+ logger: None
76
+ neptune_project: ''
77
+ output_directory: /fp/projects01/ec281/h2o-llmstudio/output/user/mist-lang/
78
+ prediction:
79
+ batch_size_inference: 0
80
+ do_sample: false
81
+ max_length_inference: 256
82
+ metric: Perplexity
83
+ metric_gpt_model: gpt-3.5-turbo-0301
84
+ min_length_inference: 2
85
+ num_beams: 1
86
+ num_history: 4
87
+ repetition_penalty: 1.2
88
+ stop_tokens: ''
89
+ temperature: 0.0
90
+ top_k: 0
91
+ top_p: 1.0
92
+ problem_type: text_causal_language_modeling
93
+ tokenizer:
94
+ add_prefix_space: false
95
+ add_prompt_answer_tokens: false
96
+ max_length: 2048
97
+ max_length_answer: 1024
98
+ max_length_prompt: 1024
99
+ padding_quantile: 1.0
100
+ use_fast: true
101
+ training:
102
+ batch_size: 6
103
+ differential_learning_rate: 1.0e-05
104
+ differential_learning_rate_layers: []
105
+ drop_last_batch: true
106
+ epochs: 4
107
+ evaluate_before_training: false
108
+ evaluation_epochs: 1.0
109
+ grad_accumulation: 1
110
+ gradient_clip: 0.0
111
+ learning_rate: 0.0001
112
+ lora: true
113
+ lora_alpha: 16
114
+ lora_dropout: 0.05
115
+ lora_r: 64
116
+ lora_target_modules: q_proj,k_proj,down_proj,v_proj,o_proj,gate_proj,up_proj
117
+ loss_function: TokenAveragedCrossEntropy
118
+ optimizer: AdamW
119
+ save_best_checkpoint: true
120
+ schedule: Cosine
121
+ train_validation_data: false
122
+ warmup_epochs: 0.1
123
+ weight_decay: 0.0