thesven commited on
Commit
eca51a8
1 Parent(s): 37de4d3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -156
README.md CHANGED
@@ -1,199 +1,146 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
11
 
12
- ## Model Details
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
 
45
 
46
- ### Downstream Use [optional]
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
 
63
 
64
- ### Recommendations
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
69
 
70
- ## How to Get Started with the Model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
75
 
76
- ## Training Details
 
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
83
 
84
- ### Training Procedure
 
 
 
 
 
 
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
 
 
89
 
90
- [More Information Needed]
91
 
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
 
3
  ---
4
 
5
+ # Model Card for Mistral-7B-Instruct-v0.3
6
 
7
+ ## Quantization Description
8
+ This repo contains a GPTQ 4 bit quantized version of the Mistral-7B-Instruct-v0.3 Large Language Model.
9
 
10
+ ## Model Description
11
 
12
+ The Mistral-7B-Instruct-v0.3 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.3.
13
 
14
+ Mistral-7B-v0.3 has the following changes compared to [Mistral-7B-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2/edit/main/README.md)
15
+ - Extended vocabulary to 32768
16
+ - Supports v3 Tokenizer
17
+ - Supports function calling
18
 
19
+ ## Installation
20
 
21
+ It is recommended to use `mistralai/Mistral-7B-Instruct-v0.3` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling.
22
 
23
+ ```
24
+ pip install mistral_inference
25
+ ```
26
 
27
+ ## Download
 
 
 
 
 
 
28
 
29
+ ```py
30
+ from huggingface_hub import snapshot_download
31
+ from pathlib import Path
32
 
33
+ mistral_models_path = Path.home().joinpath('mistral_models', '7B-Instruct-v0.3')
34
+ mistral_models_path.mkdir(parents=True, exist_ok=True)
35
 
36
+ snapshot_download(repo_id="mistralai/Mistral-7B-Instruct-v0.3", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)
37
+ ```
 
38
 
39
+ ### Chat
40
 
41
+ After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using
42
 
43
+ ```
44
+ mistral-chat $HOME/mistral_models/7B-Instruct-v0.3 --instruct --max_tokens 256
45
+ ```
46
 
47
+ ### Instruct following
48
 
49
+ ```py
50
+ from mistral_inference.model import Transformer
51
+ from mistral_inference.generate import generate
52
 
53
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
54
+ from mistral_common.protocol.instruct.messages import UserMessage
55
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
56
 
 
57
 
58
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
59
+ model = Transformer.from_folder(mistral_models_path)
60
 
61
+ completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])
62
 
63
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
64
 
65
+ out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
66
+ result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
67
 
68
+ print(result)
69
+ ```
70
 
71
+ ### Function calling
72
 
73
+ ```py
74
+ from mistral_common.protocol.instruct.tool_calls import Function, Tool
75
+ from mistral_inference.model import Transformer
76
+ from mistral_inference.generate import generate
77
 
78
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
79
+ from mistral_common.protocol.instruct.messages import UserMessage
80
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
81
 
 
82
 
83
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
84
+ model = Transformer.from_folder(mistral_models_path)
85
 
86
+ completion_request = ChatCompletionRequest(
87
+ tools=[
88
+ Tool(
89
+ function=Function(
90
+ name="get_current_weather",
91
+ description="Get the current weather",
92
+ parameters={
93
+ "type": "object",
94
+ "properties": {
95
+ "location": {
96
+ "type": "string",
97
+ "description": "The city and state, e.g. San Francisco, CA",
98
+ },
99
+ "format": {
100
+ "type": "string",
101
+ "enum": ["celsius", "fahrenheit"],
102
+ "description": "The temperature unit to use. Infer this from the users location.",
103
+ },
104
+ },
105
+ "required": ["location", "format"],
106
+ },
107
+ )
108
+ )
109
+ ],
110
+ messages=[
111
+ UserMessage(content="What's the weather like today in Paris?"),
112
+ ],
113
+ )
114
 
115
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
116
 
117
+ out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
118
+ result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
119
 
120
+ print(result)
121
+ ```
122
 
123
+ ## Generate with `transformers`
124
 
125
+ If you want to use Hugging Face `transformers` to generate text, you can do something like this.
126
 
127
+ ```py
128
+ from transformers import pipeline
129
 
130
+ messages = [
131
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
132
+ {"role": "user", "content": "Who are you?"},
133
+ ]
134
+ chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3")
135
+ chatbot(messages)
136
+ ```
137
 
138
+ ## Limitations
139
 
140
+ The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
141
+ It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
142
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
143
 
144
+ ## The Mistral AI Team
145
 
146
+ Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, William El Sayed, William Marshall